首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper describes the implementation of moving‐mesh and free‐surface capabilities within a 3‐d finite‐volume Reynolds‐averaged‐Navier–Stokes solver, using surface‐conforming multi‐block structured meshes. The free‐surface kinematic condition can be applied in two ways: enforcing zero net mass flux or solving the kinematic equation by a finite‐difference method. The free surface is best defined by intermediate control points rather than the mesh vertices. Application of the dynamic boundary condition to the piezometric pressure at these points provides a hydrostatic restoring force which helps to eliminate any unnatural free‐surface undulations. The implementation of time‐marching methods on moving grids are described in some detail and it is shown that a second‐order scheme must be applied in both scalar‐transport and free‐surface equations if flows driven by free‐surface height variations are to be computed without significant wave attenuation using a modest number of time steps. Computations of five flows of theoretical and practical interest—forced motion in a pump, linear waves in a tank, quasi‐1d flow over a ramp, solitary wave interaction with a submerged obstacle and 3‐d flow about a surface‐penetrating cylinder—are described to illustrate the capabilities of our code and methods. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
A Cartesian cut cell mesh generation procedure is developed together with a finite volume Euler solver for a two‐fluid system with a free surface. A fast and robust triangle to triangle overlap scheme is used to determine the intersection of a body‐surface with the background Cartesian mesh. Improvements to the cut cell routines include a new treatment for multiple cuts within a single cell and a surface trimming procedure to ensure a good quality mesh around solid boundaries. The formulae for calculating all necessary information about a cut cell are also presented. These are generic and can be used for arbitrarily irregular boundary elements. A collocated finite volume method with a high resolution Godunov‐type scheme in space is used for discretization of the governing flow equations. By computing in both the air and water regions simultaneously in a consistent manner, the free surface is automatically captured as a contact discontinuity in the density field without the need for any special free surface tracking method. The algorithm incorporates the artificial compressibility method with a dual time stepping strategy to maintain a divergence free velocity field. The mathematical formulation including its numerical implementation of the method is reviewed and results for a number of test cases are also presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A parallel, finite element method is presented for the computation of three‐dimensional, free‐surface flows where surface tension effects are significant. The method employs an unstructured tetrahedral mesh, a front‐tracking arbitrary Lagrangian–Eulerian formulation, and fully implicit time integration. Interior mesh motion is accomplished via pseudo‐solid mesh deformation. Surface tension effects are incorporated directly into the momentum equation boundary conditions using surface identities that circumvent the need to compute second derivatives of the surface shape, resulting in a robust representation of capillary phenomena. Sample results are shown for the viscous sintering of glassy ceramic particles. The most serious performance issue is error arising from mesh distortion when boundary motion is significant. This effect can be severe enough to stop the calculations; some simple strategies for improving performance are tested. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Predicting unsteady flows and aerodynamic forces for large displacement motion of microstructures requires transient solution of Boltzmann equation with moving boundaries. For the inclusion of moving complex boundaries for these problems, three immersed boundary method flux formulations (interpolation, relaxation, and interrelaxation) are presented. These formulations are implemented in a 2‐D finite volume method solver for ellipsoidal‐statistical (ES)‐Bhatnagar‐Gross‐Krook (BGK) equations using unstructured meshes. For the verification, a transient analytical solution for free molecular 1‐D flow is derived, and results are compared with the immersed boundary (IB)‐ES‐BGK methods. In 2‐D, methods are verified with the conformal, non‐moving finite volume method, and it is shown that the interrelaxation flux formulation gives an error less than the interpolation and relaxation methods for a given mesh size. Furthermore, formulations applied to a thermally induced flow for a heated beam near a cold substrate show that interrelaxation formulation gives more accurate solution in terms of heat flux. As a 2‐D unsteady application, IB/ES‐BGK methods are used to determine flow properties and damping forces for impulsive motion of microbeam due to high inertial forces. IB/ES‐BGK methods are compared with Navier–Stokes solution at low Knudsen numbers, and it is shown that velocity slip in the transitional rarefied regime reduces the unsteady damping force. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A 2D, depth-integrated, free surface flow solver for the shallow water equations is developed and tested. The solver is implemented on unstructured triangular meshes and the solution methodology is based upon a Godunov-type second-order upwind finite volume formulation, whereby the inviscid fluxes of the system of equations are obtained using Roe's flux function. The eigensystem of the 2D shallow water equations is derived and is used for the construction of Roe's matrix on an unstructured mesh. The viscous terms of the shallow water equations are computed using a finite volume formulation which is second-order-accurate. Verification of the solution technique for the inviscid form of the governing equations as well as for the full system of equations is carried out by comparing the model output with documented published results and very good agreement is obtained. A numerical experiment is also conducted in order to evaluate the performance of the solution technique as applied to linear convection problems. The presented results show that the solution technique is robust. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
This study investigates a fictitious domain model for the numerical solution of various incompressible viscous flows. It is based on the so‐called Navier–Stokes/Brinkman and energy equations with discontinuous coefficients all over an auxiliary embedding domain. The solid obstacles or walls are taken into account by a penalty technique. Some volumic control terms are directly introduced in the governing equations in order to prescribe immersed boundary conditions. The implicit numerical scheme, which uses an upwind finite volume method on staggered Cartesian grids, is of second‐order accuracy in time and space. A multigrid local mesh refinement is also implemented, using the multi‐level Zoom Flux Interface Correction (FIC) method, in order to increase the precision where it is needed in the domain. At each time step, some iterations of the augmented Lagrangian method combined with a preconditioned Krylov algorithm allow the divergence‐free velocity and pressure fields be solved for. The tested cases concern external steady or unsteady flows around a circular cylinder, heated or not, and the channel flow behind a backward‐facing step. The numerical results are shown in good agreement with other published numerical or experimental data. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
This paper describes a method for simulation of viscous flows with a free surface around realistic hull forms with a transom, which has been developed based on a FINFLO RANS solver with a moving mesh. A dry‐transom model is proposed and implemented for the treatment of flows off the transom. The bulk RANS flow with the artificial compressibility is solved by a cell‐centred finite volume multigrid scheme and the free surface deformed by wave motions is tracked by satisfying the kinematic and dynamic free‐surface boundary conditions on the actual location of the surface. The effects of turbulence on flows are evaluated with the Baldwin–Lomax turbulence model without a wall function. A test case is modern container ship model with a transom, the Hamburg Test Case. The calculated results are validated and they agree well with the measured results in terms of the free‐surface waves and the total resistance coefficient. Furthermore, the numerical solutions successfully captured many important features of the complicated interaction of the free surface with viscous flows around transom stern ships. In addition, the convergence performance and the grid refinement studies are also investigated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
We have successfully extended our implicit hybrid finite element/volume (FE/FV) solver to flows involving two immiscible fluids. The solver is based on the segregated pressure correction or projection method on staggered unstructured hybrid meshes. An intermediate velocity field is first obtained by solving the momentum equations with the matrix‐free implicit cell‐centered FV method. The pressure Poisson equation is solved by the node‐based Galerkin FE method for an auxiliary variable. The auxiliary variable is used to update the velocity field and the pressure field. The pressure field is carefully updated by taking into account the velocity divergence field. This updating strategy can be rigorously proven to be able to eliminate the unphysical pressure boundary layer and is crucial for the correct temporal convergence rate. Our current staggered‐mesh scheme is distinct from other conventional ones in that we store the velocity components at cell centers and the auxiliary variable at vertices. The fluid interface is captured by solving an advection equation for the volume fraction of one of the fluids. The same matrix‐free FV method, as the one used for momentum equations, is used to solve the advection equation. We will focus on the interface sharpening strategy to minimize the smearing of the interface over time. We have developed and implemented a global mass conservation algorithm that enforces the conservation of the mass for each fluid. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
We present a nodal Godunov method for Lagrangian shock hydrodynamics. The method is designed to operate on three‐dimensional unstructured grids composed of tetrahedral cells. A node‐centered finite element formulation avoids mesh stiffness, and an approximate Riemann solver in the fluid reference frame ensures a stable, upwind formulation. This choice leads to a non‐zero mass flux between control volumes, even though the mesh moves at the fluid velocity, but eliminates volume errors that arise due to the difference between the fluid velocity and the contact wave speed. A monotone piecewise linear reconstruction of primitive variables is used to compute interface unknowns and recover second‐order accuracy. The scheme has been tested on a variety of standard test problems and exhibits first‐order accuracy on shock problems and second‐order accuracy on smooth flows using meshes of up to O(106) tetrahedra. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we present a finite element model for free surface flows on fixed meshes. The main novelty of the approach, compared with typical fixed mesh finite element models for such flows, is that we take advantage of the particularities of free surface flow, instead of considering it a particular case of two‐phase flow. The fact that a given free surface implies a known boundary condition on the interface, allows us to solve the Navier–Stokes equations on the fluid domain uncoupled from the solution on the rest of the finite element mesh. This, together with the use of enhanced integration allows us to model low Froude number flows accurately, something that is not possible with typical two‐phase flow models applied to free surface flow. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, the circular function‐based gas‐kinetic scheme (CGKS), which was originally developed for simulation of flows on stationary grids, is extended to solve moving boundary problems on moving grids. Particularly, the unsteady flows through oscillating cascades are our major interests. The main idea of the CGKS is to discretize the macroscopic equations by the finite volume method while the fluxes at the cell interface are evaluated by locally reconstructing the solution of the continuous Boltzmann Bhatnagar–Gross–Krook equation. The present solver is based on the fact that the modified Boltzmann equation, which is expressed in a moving frame of reference, can recover the corresponding macroscopic equations with Chapman–Enskog expansion analysis. Different from the original Maxwellian function‐based gas‐kinetic scheme, in improving the computational efficiency, a simple circular function is used to describe the equilibrium state of distribution function. Considering that the concerned cascade oscillating problems belong to cases that the motion of surface boundary is known a priori, the dynamic mesh method is suitable and is adopted in the present work. In achieving the mesh deformation with high quality and efficiency, a hybrid dynamic mesh method named radial basic functions‐transfinite interpolation is presented and applied for cascade geometries. For validation, several numerical test cases involving a wide range are investigated. Numerical results show that the developed CGKS on moving grids is well applied for cascade oscillating flows. And for some cases where nonlinear effects are strong, the solution accuracy could be effectively improved by using the present method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we report our development of an implicit hybrid flow solver for the incompressible Navier–Stokes equations. The methodology is based on the pressure correction or projection method. A fractional step approach is used to obtain an intermediate velocity field by solving the original momentum equations with the matrix‐free implicit cell‐centred finite volume method. The Poisson equation derived from the fractional step approach is solved by the node‐based Galerkin finite element method for an auxiliary variable. The auxiliary variable is closely related to the real pressure and is used to update the velocity field and the pressure field. We store the velocity components at cell centres and the auxiliary variable at cell vertices, making the current solver a staggered‐mesh scheme. Numerical examples demonstrate the performance of the resulting hybrid scheme, such as the correct temporal convergence rates for both velocity and pressure, absence of unphysical pressure boundary layer, good convergence in steady‐state simulations and capability in predicting accurate drag, lift and Strouhal number in the flow around a circular cylinder. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents the calculated results for three classes of typical modern ships in modelling of ship‐generated waves. Simulations of turbulent free‐surface flows around ships are performed in a numerical water tank, based on the FINFLO‐RANS SHIP solver developed at Helsinki University of Technology. The Reynolds‐averaged Navier–Stokes (RANS) equations with the artificial compressibility and the non‐linear free‐surface boundary conditions are discretized by means of a cell‐centred finite‐volume scheme. The convergence performance is improved with the multigrid method. A free surface is tracked using a moving mesh technology, in which the non‐linear free‐surface boundary conditions are given on the actual location of the free surface. Test cases recommended are a container ship, a US Navy combatant and a tanker. The calculated results are compared with the experimental data available in the literature in terms of the wave profiles, wave pattern, and turbulent flow fields for two turbulence models, Chien's low Reynolds number k–εmodel and Baldwin–Lomax's model. Furthermore, the convergence performance, the grid refinement study and the effect of turbulence models on the waves have been investigated. Additionally, comparison of two types of the dynamic free‐surface boundary conditions is made. Copyright © 2003 John Wiley& Sons, Ltd.  相似文献   

14.
Towards simulation of flapping wings using immersed boundary method   总被引:1,自引:0,他引:1  
In this work the immersed boundary method is applied to simulate incompressible turbulent flows around stationary and moving objects. The goal is to demonstrate that the immersed boundary technique along with a large eddy simulation approach is capable of simulating the effect of the so‐called leading edge vortex (LEV), which can be found in flapping wing aerodynamics. A Lagrangian method is used to approximate the solutions in the freshly cleared cells that lay within solid objects at one time step and emerge into fluid domain at the next time step. Flow around a stationary cylinder at ReD = 20, 40, and 3900 (based on cylinder diameter D) is first studied to validate the immersed boundary solver based on the finite volume scheme using a staggered grid. Then, a harmonically oscillating cylinder at ReD = 10 000 is considered to test the solver after the Lagrangian method is implemented to interpolate the solution in the freshly cleared cells. Finally, this approach is used to study flows around a stationary flat‐plate at several angles of attack and fast pitching flat‐plate. The rapidly pitching plate creates a dynamic LEV that can be used to improve the efficiency of flapping wings of micro air vehicle and to determine the optimum flapping frequency. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Computational fluid mechanics techniques for examining free surface problems in two‐dimensional form are now well established. Extending these methods to three dimensions requires a reconsideration of some of the difficult issues from two‐dimensional problems as well as developing new formulations to handle added geometric complexity. This paper presents a new finite element formulation for handling three‐dimensional free surface problems with a boundary‐fitted mesh and full Newton iteration, which solves for velocity, pressure, and mesh variables simultaneously. A boundary‐fitted, pseudo‐solid approach is used for moving the mesh, which treats the interior of the mesh as a fictitious elastic solid that deforms in response to boundary motion. To minimize mesh distortion near free boundary under large deformations, the mesh motion equations are rotated into normal and tangential components prior to applying boundary conditions. The Navier–Stokes equations are discretized using a Galerkin–least square/pressure stabilization formulation, which provides good convergence properties with iterative solvers. The result is a method that can track large deformations and rotations of free surface boundaries in three dimensions. The method is applied to two sample problems: solid body rotation of a fluid and extrusion from a nozzle with a rectangular cross‐section. The extrusion example exhibits a variety of free surface shapes that arise from changing processing conditions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
A finite volume incompressible flow solver is presented for three‐dimensional unsteady flows based on an unstructured tetrahedral mesh, with collocation of the flow variables at the cell vertices. The solver is based on the pressure‐correction method, with an explicit prediction step of the momentum equations followed by a Poisson equation for the correction step to enforce continuity. A consistent discretization of the Poisson equation was found to be essential in obtaining a solution. The correction step was solved with the biconjugate gradient stabilized (Bi‐CGSTAB) algorithm coupled with incomplete lower–upper (ILU) preconditioning. Artificial dissipation is used to prevent the formation of instabilities. Flow solutions are presented for a stalling airfoil, vortex shedding past a bridge deck and flow in model alveoli. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is concerned with the formulation and the evaluation of a hybrid solution method that makes use of domain decomposition and multigrid principles for the calculation of two-dimensional compressible viscous flows on unstructured triangular meshes. More precisely, a non-overlapping additive domain decomposition method is used to coordinate concurrent subdomain solutions with a multigrid method. This hybrid method is developed in the context of a flow solver for the Navier-Stokes equations which is based on a combined finite element/finite volume formulation on unstructured triangular meshes. Time integration of the resulting semi-discrete equations is performed using a linearized backward Euler implicit scheme. As a result, each pseudo time step requires the solution of a sparse linear system. In this study, a non-overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step. Algebraically, the Schwarz algorithm is equivalent to a Jacobi iteration on a linear system whose matrix has a block structure. A substructuring technique can be applied to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In the present approach, the interface unknowns are numerical fluxes. The interface system is solved by means of a full GMRES method. Here, the local system solves that are induced by matrix-vector products with the interface operator, are performed using a multigrid by volume agglomeration method. The resulting hybrid domain decomposition and multigrid solver is applied to the computation of several steady flows around a geometry of NACA0012 airfoil.  相似文献   

18.
In this paper, we present a numerical scheme for solving 2‐phase or free‐surface flows. Here, the interface/free surface is modeled using the level‐set formulation, and the underlying mesh is adapted at each iteration of the flow solver. This adaptation allows us to obtain a precise approximation for the interface/free‐surface location. In addition, it enables us to solve the time‐discretized fluid equation only in the fluid domain in the case of free‐surface problems. Fluids here are considered incompressible. Therefore, their motion is described by the incompressible Navier‐Stokes equation, which is temporally discretized using the method of characteristics and is solved at each time iteration by a first‐order Lagrange‐Galerkin method. The level‐set function representing the interface/free surface satisfies an advection equation that is also solved using the method of characteristics. The algorithm is completed by some intermediate steps like the construction of a convenient initial level‐set function (redistancing) as well as the construction of a convenient flow for the level‐set advection equation. Numerical results are presented for both bifluid and free‐surface problems.  相似文献   

19.
An Arbitrary Lagrangian–Eulerian method for the calculation of incompressible Navier–Stokes equations in deforming geometries is described. The mesh node connectivity is defined by a Delaunay triangulation of the nodes, whereas the discretized equations are solved using finite volumes defined by the Voronoi dual of the triangulation. For prescribed boundary motion, an automatic node motion algorithm provides smooth motion of the interior nodes. Changes in the connectivity of the nodes are made through the use of local transformations to maintain the mesh as Delaunay. This allows the nodes and their associated Voronoi finite volumes to migrate through the domain in a free manner, without compromising the quality of the mesh. An MAC finite volume solver is applied on the Voronoi dual using a cell‐centred non‐staggered formulation, with cell‐face velocities being calculated by the Rhie–Chow momentum interpolation. Advective fluxes are approximated with the third‐order QUICK differencing scheme. The solver is demonstrated via its application to a driven cavity flow, and the flow about flapping aerofoil geometries. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号