首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cuprous oxide is selected as a promising material for photovoltaic applications. Density functional theory is used to study the structural, electronic, and thermodynamic properties of cuprous oxide by using the local density approximation and generalized-gradient approximation. The effect of pressure on the structural and electronic properties of Cu2O is investigated. This study confirms and characterizes the existence of new phases. Hexagonal and tetragonal phases are not completely indentified. We focus on the phase transition of the cuprous oxide under hydrostatic pressure to tetragonal and hexagonal (CdI2) structures. Variation of enthalpy with pressure is used to calculate the pressure of the phase transition.  相似文献   

2.
The fast and selective growth of cuprous oxide (Cu2O) nanorods into anodic aluminum oxide (AAO) templates is achieved under optimized alkaline conditions via electrochemical deposition. The growth rate of Cu2O nanorods at room temperature reached 360 nm/min, the fastest rate reported to date. The synthesis of Cu2O nanorods by applying a constant current by using Cu2O nanotubes as a transition state is extensively discussed; a Pt pottery-shaped layer played a key role as a seed layer for the fast Cu2O growth. We report here the existence of regions of nanostructured Cu2O based on our studies and previous relevant works, which include potential-pH curves for Cu2+-lactate solutions.  相似文献   

3.
Size-tuned copper oxide nanoparticles with sizes of 9, 12, and 15 nm were fabricated by laser ablation and on-line size selection using a differential mobility analyzer at a gas pressure of 666 Pa. The dependence of the particle properties on the in situ annealing temperatures and selection sizes was investigated. The crystalline phases of the nanoparticles fabricated at temperatures below 973 K were assigned to monoclinic cupric oxide (CuO) which converted into cubic cuprous oxide (Cu2O) when the annealing temperature was above 1,173 K. This indicates that the crystalline phases can be easily controlled by changing the annealing temperature. TEM images confirmed that well-crystallized and well-dispersed CuO and Cu2O nanoparticles with narrow size distributions were obtained using this method. This fabrication process is useful and promising for the future investigation of the intrinsic size-dependent properties of CuO and Cu2O.  相似文献   

4.
Fabrication of cuprous and cupric oxide thin films by heat treatment   总被引:1,自引:0,他引:1  
Cuprous oxide (Cu2O) and cupric oxide (CuO) thin films were prepared by thermal oxidation of copper films coated on indium tin oxide (ITO) glass and non-alkaline glass substrates. The formation of Cu2O and CuO was controlled by varying oxidation conditions such as, oxygen partial pressure, heat treatment temperature, and oxidation time. The microstructure, crystal direction, and optical properties of copper oxide films were measured with X-ray diffraction, atomic force microscopy, and optical spectroscopy. The results indicated that the phase-pure Cu2O and CuO films were produced in the oxidation process. Optical transmittance and reflectance spectra of Cu2O and CuO clearly exhibited distinct characteristics related to their phases. The electrical properties indicated that these films formed ohmic contacts with Cu and ITO electrode materials. Multilayers of Cu2O/CuO were fabricated by choosing the oxidation sequence. The experimental results in this paper suggest that the thermal oxidation method can be employed to fabricate device quality Cu2O and CuO films that are up to 200–300 nm thick.  相似文献   

5.
Investigations on lanthanum gallium chromium mixed oxides of the compositions La1.0Ga0.2Cr0.8O3−d and La0.9Ga0.2Cr0.8O3-d are presented regarding their structure, redox stability, conductivity and catalytic activity for the oxidation of propene. The mixed oxide has perovskite-type structure, high redox stability, an electronic p-type conductivity and low catalytic activity. If the perovskite-type compound has a deficiency of lanthanum, the electronic conductivity, surface area and catalytic activity are significantly higher. The catalytic activity is likely comparable to that of gold. Similar to gold electrodes of solid electrolytes, oxygen electrodes formed with gallium doped lanthanum chromite show a relatively high sensitivity to hydrocarbons such as propene at temperatures of about 700 °C. The mixed oxide is possibly suitable as electrode material for exhaust gas sensors using oxide-ion conducting solid electrolytes. Paper presented at the 5th Euroconference on Solid State Ionics, Benalmádena, Spain, September 13–20, 1998.  相似文献   

6.
P. Shuk  U. Guth 《Ionics》1995,1(2):106-111
Modified active electrode materials based upon rare earth manganites were developed for different solid electrolyte electrochemical cells. The preparation, structure, thermal expansion, the state of oxygen on the surface, the electronic and ionic conductivity of the perovskites Ln1−xCa(Sr)xMn1−y(Co, Ni)yO3−δ with various compositions and electrode kinetics on the manganite electrode/solid electrolyte interfaces were investigated. The value of the bulk conductivity was larger than 150 S/cm (at 1100 K) and increased significantly with increasing contents of Ni or Co. The thermal expansion coefficients of rare earth manganites were close to those of ZrO2 based solid electrolytes. The expansion coefficients of Co or Ni subsituted lanthanum manganites increase with Co or Ni substitution and are over 12•10−6K−1. The ionic conductivities were determined using encapsulated zirconia microelectrodes based on a Hebb-Wagner analysis of the currentvoltage curves. The relatively high oxide ion conductivity of 10−5 S/cm at 900...1000 K was found by Ni or Co doped manganites. Studies of the electrode kinetics using complex impedance spectroscopy show that Co and Ni doped manganites have advantages if used as electrodes as compared with these for noble metals. Paper presented at the 1st Euroconference on Solid State Ionics, Zakynthos, Greece, 11–18 Sept. 1994  相似文献   

7.
H. P. He  X. J. Huang  L. Q. Chen 《Ionics》2000,6(1-2):64-69
It has been found that the electrical conduction behavior of La0.9Sr0.1InO3−δ varies with oxygen partial pressure. P-type and n-type conduction at high and low oxygen partial pressure have been observed respectively. While at intermediate oxygen partial pressures, the electrical conductivity changes slightly with the oxygen partial pressure. Thus, La0.9Sr0.1InO3−δ may be a possible material for making single layer solid oxide fuel cell (SLFC). The concept of SLFC has been tested using a piece of thick ceramic pellet of La0.9Sr0.1InO3−δ. The maximum current density and power density is 12 mA/cm2 and 3 mW/cm2 at 800 °C when dilute H2 and air were used as fuel and oxidizing agent, respectively. The phase stability of La0.9Sr0.1InO3−δ has been studied by Raman spectra and XRD. It is confirmed that secondary phase may appear in La0.9Sr0.1InO3−δ after long term testing in low oxygen partial pressure, and finally it may be decomposed into La2O3 and metal Indium. Much attention should be paid to stabilize La0.9Sr0.1InO3−δ and to improve the performance of SLFC.  相似文献   

8.
Laminar convective heat transfer enhancement of cuprous oxide (Cu2O)/water nanofluid flowing through a circular tube was investigated experimentally in the present work. A continuous closed loop was designed to measure heat transfer coefficients and pressure drop associated with the flow of Cu2O/water nanofluid over a wide range of laminar flow conditions. Comparison of the nanofluid experimental results with those of pure water have shown significant enhancement for heat transfer coefficients. On average, a 10% increase in heat transfer coefficient was observed with 16% penalty in pressure drop.  相似文献   

9.
《Current Applied Physics》2015,15(4):473-478
In this work, graphene oxide–cuprous oxide (GO–Cu2O) composite films were grown on fluorine-doped tin oxide substrates by electrochemical deposition. We investigated the effects of the annealing temperature on the morphological, structural, optical and photoelectrochemical (PEC) properties of GO–Cu2O composite films. As a result, our work shows that while GO–Cu2O composite films exhibit the highest XRD (111) peak intensity at 300 °C sample, the highest photocurrent density value obtained was −4.75 mA/cm2 at 200 °C sample (using 0.17 V versus a reversible hydrogen electrode (RHE)). In addition, a reduction reaction at 300 °C sample was observed using XPS analysis from the shift in the O1s peak in addition to a weaker O1s peak intensity.  相似文献   

10.
《Surface science》1994,321(3):L249-L254
The characteristics of CO and NO adsorption on surfaces of CuO(110) and Cu2O(110) have been studied by using the self-consistent-charge discrete variational Xa method (SCC-DV-Xa). The calculated results show that the CO and NO molecules are perpendicularly adsorbed on cuprous ions of Cu2O and cupric ions of CuO, respectively and with oxygen pointing upward in both cases. The order of chemisorption energy of the four adsorbed systems is: CuO-NO > Cu2O-CO > Cu2O-NO > CuO-CO. In all chemisorptions discussed d orbitals of Cu do play an important role.  相似文献   

11.
Copper (Cu) based metal oxides have high electrocatalytic ability. In this work, we are synthesized stone-like cuprous oxide particles (Cu2O SNPs) covered on acid functionalized graphene oxide (GOS) sheets using ultrasonic process (50 kHz and 100 W). Besides, the chemical structural and crystalline analyses of Cu2O SNPs@GOS composites were characterized by transmission electron microscopy, X-ray crystallography and energy-dispersive X-ray spectroscopy. The Cu2O SNPs@GOS nanomaterials were tested towards detection of 8-hydroxydeoxyguanosine (8-OHdG) in biological samples. As expected Cu2O SNPs@GOS catalyst modified electrodes performed an outstanding catalytic ability on 8-hydroxydeoxyguanosine oxidation. 8-OHdG is oxidative stress biomarker. Further, it is noted that the detection performance of Cu2O SNPs@GOS coated electrodes and it’s highly enhanced due to the synergistic effect of Cu2O SNPs and GOS. Besides, the modified materials provide more electro-active faces and as well as rapid electron transport pathway and shorten diffusion. Moreover, oxidation of 8-OHdG sensor is exploring a long linear or working range of 0.02–1465 µM and high sensitivity (8.75 nM). The viability of the Cu2O SNPs@GOS proposed electrochemical methods have tested, to find out 8-OHdG concentrations in biological fluids (blood serum and urine) with a satisfying recovery ranges.  相似文献   

12.
We report on the growth of cubic spinel ZnCo2O4 thin films by reactive magnetron sputtering and bipolarity of their conduction type by tuning of oxygen partial pressure ratio in the sputtering gas mixture. Crystal structure of zinc cobalt oxide films sputtered in an oxygen partial pressure ratio of 90% was found to change from wurtzite Zn1−xCoxO to spinel ZnCo2O4 with an increase of the sputtering power ratio between the Co and Zn metal targets, DCo/DZn, from 0.1 to 2.2. For a fixed DCo/DZn of 2.0 yielding single-phase spinel ZnCo2O4 films, the conduction type was found to be dependent on the oxygen partial pressure ratio: n-type and p-type for the oxygen partial pressure ratio below ∼70% and above ∼85%, respectively. The electron and hole concentrations for the ZnCo2O4 films at 300 K were as high as 1.37×1020 and 2.81×1020 cm−3, respectively, with a mobility of more than 0.2 cm2/V s and a conductivity of more than 1.8 S cm−1.  相似文献   

13.
A complete optical characterization in the visible region of thin copper oxide films has been performed by ellipsometry. Copper oxide films of various thicknesses were grown on thick copper films by low temperature thermal oxidation at 125 °C in air for different time intervals. The thickness and optical constants of the copper oxide films were determined in the visible region by ellipsometric measurements. It was found that a linear time law is valid for the oxide growth in air at 125 °C. The spectral behaviour of the optical constants and the value of the band gap in the oxide films determined by ellipsometry in this study are in agreement with the behaviour of those of Cu2O, which have been obtained elsewhere through reflectance and transmittance methods. The band gap of copper oxide, determined from the spectral behaviour of the absorption coefficient was about 2 eV, which is the generally accepted value for Cu2O. It was therefore concluded that the oxide composition of the surface film grown on copper is in the form of Cu2O (cuprous oxide). It was also shown that the reflectance spectra of the copper oxide–copper structures exhibit behaviour expected from a single layer antireflection coating of Cu2O on Cu. Received: 19 July 2001 / Accepted: 27 July 2001 / Published online: 17 October 2001  相似文献   

14.
Attenuated total reflectance (ATR) spectroscopy was used to perform in situ studies of the corrosion inhibition of cuprous oxide (Cu2O) by benzotriazole (BTA) in aqueous solution at concentrations from 1 to 20 μM. Because two separate processes occur simultaneously, that of Cu2O corrosion and corrosion inhibition by BTA adsorption, the spectral information was subjected to deconvolution by a conjugate gradient minimization algorithm. Under these conditions, a solution phase concentration of 7-10 μM BTA nearly completely inhibited the corrosion of Cu2O in deionized water. Using a Langmuir adsorption model, this represented only 25% of the maximally covered surface area.  相似文献   

15.
We present results of an experimental study of the effect of magnetic scattering centers (nickel) in the insulator component (cuprous oxide) of the composite HTSC+Cu1−x NixO on its transport properties. A suppression of the superconducting properties of this system is observed to take place with increasing nickel content. The results are analyzed within the framework of the model of strong electron correlations. Fiz. Tverd. Tela (St. Petersburg) 40, 1599–1603 (September 1998)  相似文献   

16.
High precision coulometric measurements of the equilibrium oxygen content in the solid solution YBa2Cu3-xCoxO6+δ, where x=0, 0.2, 0.4, 0.6 and 0.8, were carried out using a double-cell technique in the temperature range 600 – 850 °C and at oxygen pressure varying between 10−5 and 1 atm. The data were employed to determine the partial molar enthalpy and entropy of the movable oxygen depending on δ and x. The electrical conductivity and thermopower were also measured in the same range of the external parameters, and their dependence on the oxygen concentration was determined at different cobalt content. The data reveal several types of oxygen sites participating in the gas-solid equilibrium. The behavior of thermodynamic functions is indicative of the partial ordering of the complex species which form the structural layer Cu1-xCoxOδ with variable content of oxygen and cobalt. It was shown that replacement of copper by cobalt does not result in appearance of the electronic charge carriers. The behavior of the thermopower and electric conductivity was explained with a narrow band model. The energy change with δ and x of the p-band, which dominates the conductivity, was found to follow the respective change in the oxygen partial enthalpy. Thus, electronic carriers in the layered structure of the cuprate are strongly influenced by the labile oxygen ions. Paper presented at the 5th Euroconference on Solid State Ionics, Benalmádena, Spain, Sept. 13–20, 1998.  相似文献   

17.
Li Wang 《Applied Surface Science》2006,252(8):2711-2716
In this paper, a method for highly ordered assembly of cuprous oxide (Cu2O) nanoparticles (NPs) by DNA templates was reported. Cetyltrimethylammonium bromide (CTAB)-capped Cu2O NPs were adsorbed onto well-aligned λ-DNA chains to form necklace-like one-dimensional (1D) nanostructures. UV-vis, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the nanostructure. The Cu2O nanostructures fabricated with the method are both highly ordered and quite straight.  相似文献   

18.
In this paper, a novel method for fabrication of silver/cuprous oxide (Ag/Cu2O) nanocomposites is reported. The method involves the reduction of Ag+ and Cu2+ in the aqueous solution to Ag/Cu2O without adding any reducing reagent under electron beam (EB) irradiation. Dye methyl orange is used as the pollutant model to investigate the photocatalytic properties of these nanocomposites. The results reveal that they have higher photocatalytic efficiencies than that of Cu2O under visible light. These visible light-sensitive catalysts may have potential application in the field of environmental remediation.  相似文献   

19.
A pulsed electrodeposition technique based on a multipulse sequence of potentials of equal amplitude, duration and polarity was employed for preparation of highly dispersed flower-like cuprous oxide (Cu2O) nanoparticles. The morphology analysis of the particles using scanning electron microscope (SEM) reveals that the flower-like particles were from sequential growth of Cu2O along the (1 1 1) direction on the cubic Cu2O (1 0 0). The structure and the chemical composition of the deposits were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Optical property and band gap of the Cu2O was investigated using UV/vis diffuse reflection spectra (DRS), and the measured value of energy gap is 2.18 eV. The dark and light open circuit potential-time characterization study showed that the flower-like Cu2O nanoparticles exhibited good photoelectric response. Cyclic voltammetry carried out in the presence of p-nitrophenol (p-NP) shows that the electrocatalytic performance of the Cu2O particles for the reduction of p-NP, which was characterized by a cathodic peak at around −0.6 V. The influence of the incidence of light on the electrocatalysis is also discussed.  相似文献   

20.
Results are reported of the phase relations in the (Agx-δ/2Cu1-x)2 system, ionic conductivity, self-diffusion and chemical diffusion coefficients for the solid solutions as a function of the composition x, degree of non-stoichiometry δ, and temperature in the range 473 – 673 K. The extensions of the homogeneity regions for single-phases are determined. Total and partial ionic conductivity values are given for copper and silver ions for the solid solutions. Measurements of the self-diffusion coefficient and the correlation factors are reported. It is shown that for solid solutions that the chemical diffusion is well described in terms of the phenomenological theory of ionic transport in mixed ionic electronic conductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号