首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

In this paper we study the following fractional Hamiltonian systems

$$\begin{aligned} \left\{ \begin{array}{lllll} -_{t}D^{\alpha }_{\infty }(_{-\infty }D^{\alpha }_{t}x(t))- L(t).x(t)+\nabla W(t,x(t))=0, \\ x\in H^{\alpha }(\mathbb {R}, \mathbb {R}^{N}), \end{array} \right. \end{aligned}$$

where \(\alpha \in \left( {1\over {2}}, 1\right] ,\ t\in \mathbb {R}, x\in \mathbb {R}^N,\ _{-\infty }D^{\alpha }_{t}\) and \(_{t}D^{\alpha }_{\infty }\) are the left and right Liouville–Weyl fractional derivatives of order \(\alpha \) on the whole axis \(\mathbb {R}\) respectively, \(L:\mathbb {R}\longrightarrow \mathbb {R}^{2N}\) and \(W: \mathbb {R}\times \mathbb {R}^{N}\longrightarrow \mathbb {R}\) are suitable functions. One ground state solution is obtained by applying the monotonicity trick of Jeanjean and the concentration-compactness principle in the case where the matrix L(t) is positive definite and \(W \in C^{1}(\mathbb {R}\times \mathbb {R}^{N},\mathbb {R})\) is superquadratic but does not satisfy the usual Ambrosetti–Rabinowitz condition.

  相似文献   

2.

Consider the following nonparametric model: \(Y_{ni}=g(x_{ni})+ \varepsilon _{ni},1\le i\le n,\) where \(x_{ni}\in {\mathbb {A}}\) are the nonrandom design points and \({\mathbb {A}}\) is a compact set of \({\mathbb {R}}^{m}\) for some \(m\ge 1\), \(g(\cdot )\) is a real valued function defined on \({\mathbb {A}}\), and \(\varepsilon _{n1},\ldots ,\varepsilon _{nn}\) are \(\rho ^{-}\)-mixing random errors with zero mean and finite variance. We obtain the Berry–Esseen bounds of the weighted estimator of \(g(\cdot )\). The rate can achieve nearly \(O(n^{-1/4})\) when the moment condition is appropriate. Moreover, we carry out some simulations to verify the validity of our results.

  相似文献   

3.

We prove that given any \(\epsilon >0\), a non-zero adelic Hilbert cusp form \({\mathbf {f}}\) of weight \(k=(k_1,k_2,\ldots ,k_n)\in ({\mathbb {Z}}_+)^n\) and square-free level \(\mathfrak {n}\) with Fourier coefficients \(C_{{\mathbf {f}}}(\mathfrak {m})\), there exists a square-free integral ideal \(\mathfrak {m}\) with \(N(\mathfrak {m})\ll k_0^{3n+\epsilon }N(\mathfrak {n})^{\frac{6n^2+1}{2}+\epsilon }\) such that \(C_{{\mathbf {f}}}(\mathfrak {m})\ne 0\). The implied constant depends on \(\epsilon , F\).

  相似文献   

4.
Alzer  Horst  Kwong  Man Kam 《The Ramanujan Journal》2022,57(1):401-416

A result of Vietoris states that if the real numbers \(a_1,\ldots ,a_n\) satisfy

$$\begin{aligned} \text{(*) } \qquad a_1\ge \frac{a_2}{2} \ge \cdots \ge \frac{a_n}{n}>0 \quad \text{ and } \quad a_{2k-1}\ge a_{2k} \quad (1\le k\le n/2), \end{aligned}$$

then, for \(x_1,\ldots ,x_m>0\) with \(x_1+\cdots +x_m <\pi \),

$$\begin{aligned} \begin{aligned} \text{(**) } \qquad \sum _{k=1}^n a_k \frac{\sin (k x_1) \cdots \sin (k x_m)}{k^m}>0. \end{aligned} \end{aligned}$$

We prove that \((**)\) (with “\(\ge \)” instead of “>”) holds under weaker conditions. It suffices to assume, instead of \((*)\), that

$$\begin{aligned} \sum _{k=1}^N a_k \frac{\sin (kt)}{k}>0 \quad (N=1,\ldots ,n; \, 0<t<\pi ), \end{aligned}$$

and, moreover, \((**)\) is valid for a larger region, namely, \(x_1,\ldots ,x_m\in (0,\pi )\).

  相似文献   

5.
Let \(X_n = \{x^j\}_{j=1}^n\) be a set of n points in the d-cube \({\mathbb {I}}^d:=[0,1]^d\), and \(\Phi _n = \{\varphi _j\}_{j =1}^n\) a family of n functions on \({\mathbb {I}}^d\). We consider the approximate recovery of functions f on \({{\mathbb {I}}}^d\) from the sampled values \(f(x^1), \ldots , f(x^n)\), by the linear sampling algorithm \( L_n(X_n,\Phi _n,f) := \sum _{j=1}^n f(x^j)\varphi _j. \) The error of sampling recovery is measured in the norm of the space \(L_q({\mathbb {I}}^d)\)-norm or the energy quasi-norm of the isotropic Sobolev space \(W^\gamma _q({\mathbb {I}}^d)\) for \(1 < q < \infty \) and \(\gamma > 0\). Functions f to be recovered are from the unit ball in Besov-type spaces of an anisotropic smoothness, in particular, spaces \(B^{\alpha ,\beta }_{p,\theta }\) of a “hybrid” of mixed smoothness \(\alpha > 0\) and isotropic smoothness \(\beta \in {\mathbb {R}}\), and spaces \(B^a_{p,\theta }\) of a nonuniform mixed smoothness \(a \in {\mathbb {R}}^d_+\). We constructed asymptotically optimal linear sampling algorithms \(L_n(X_n^*,\Phi _n^*,\cdot )\) on special sparse grids \(X_n^*\) and a family \(\Phi _n^*\) of linear combinations of integer or half integer translated dilations of tensor products of B-splines. We computed the asymptotic order of the error of the optimal recovery. This construction is based on B-spline quasi-interpolation representations of functions in \(B^{\alpha ,\beta }_{p,\theta }\) and \(B^a_{p,\theta }\). As consequences, we obtained the asymptotic order of optimal cubature formulas for numerical integration of functions from the unit ball of these Besov-type spaces.  相似文献   

6.

We study a multilinear version of the Hörmander multiplier theorem, namely

$$ \Vert T_{\sigma}(f_{1},\dots,f_{n})\Vert_{L^{p}}\lesssim \sup_{k\in\mathbb{Z}}{\Vert \sigma(2^{k}\cdot,\dots,2^{k}\cdot)\widehat{\phi^{(n)}}\Vert_{L^{2}_{(s_{1},\dots,s_{n})}}}\Vert f_{1}\Vert_{H^{p_{1}}}\cdots\Vert f_{n}\Vert_{H^{p_{n}}}. $$

We show that the estimate does not hold in the limiting case \(\min \limits {(s_{1},\dots ,s_{n})}=d/2\) or \({\sum}_{k\in J}{({s_{k}}/{d}-{1}/{p_{k}})}=-{1}/{2}\) for some \(J \subset \{1,\dots ,n\}\). This provides the necessary and sufficient condition on \((s_{1},\dots ,s_{n})\) for the boundedness of Tσ.

  相似文献   

7.

Let \(p(\cdot ):\ {{\mathbb {R}}}^n\rightarrow (0,\infty ]\) be a variable exponent function satisfying the globally log-Hölder continuous condition, \(q\in (0,\infty ]\) and A be a general expansive matrix on \({\mathbb {R}}^n\). Let \(H_A^{p(\cdot ),q}({{\mathbb {R}}}^n)\) be the anisotropic variable Hardy–Lorentz space associated with A defined via the radial grand maximal function. In this article, the authors characterize \(H_A^{p(\cdot ),q}({{\mathbb {R}}}^n)\) by means of the Littlewood–Paley g-function or the Littlewood–Paley \(g_\lambda ^*\)-function via first establishing an anisotropic Fefferman–Stein vector-valued inequality on the variable Lorentz space \(L^{p(\cdot ),q}({\mathbb {R}}^n)\). Moreover, the finite atomic characterization of \(H_A^{p(\cdot ),q}({{\mathbb {R}}}^n)\) is also obtained. As applications, the authors then establish a criterion on the boundedness of sublinear operators from \(H^{p(\cdot ),q}_A({\mathbb {R}}^n)\) into a quasi-Banach space. Applying this criterion, the authors show that the maximal operators of the Bochner–Riesz and the Weierstrass means are bounded from \(H^{p(\cdot ),q}_A({\mathbb {R}}^n)\) to \(L^{p(\cdot ),q}({\mathbb {R}}^n)\) and, as consequences, some almost everywhere and norm convergences of these Bochner–Riesz and Weierstrass means are also obtained. These results on the Bochner–Riesz and the Weierstrass means are new even in the isotropic case.

  相似文献   

8.

The problem of the minimax testing of the Poisson process intensity \({\mathbf{s}}\) is considered. For a given intensity \({\mathbf{p}}\) and a set \(\mathcal{Q}\), the minimax testing of the simple hypothesis \(H_{0}: {\mathbf{s}} = {\mathbf{p}}\) against the composite alternative \(H_{1}: {\mathbf{s}} = {\mathbf{q}},\,{\mathbf{q}} \in \mathcal{Q}\) is investigated. The case, when the 1-st kind error probability \(\alpha \) is fixed and we are interested in the minimal possible 2-nd kind error probability \(\beta ({\mathbf{p}},\mathcal{Q})\), is considered. What is the maximal set \(\mathcal{Q}\), which can be replaced by an intensity \({\mathbf{q}} \in \mathcal{Q}\) without any loss of testing performance? In the asymptotic case (\(T\rightarrow \infty \)) that maximal set \(\mathcal{Q}\) is described.

  相似文献   

9.
10.

Let \(K\subset {\mathbb {R}}^d\) be a bounded set with positive Lebesgue measure. Let \(\Lambda =M({\mathbb {Z}}^{2d})\) be a lattice in \({\mathbb {R}}^{2d}\) with density dens\((\Lambda )=1\). It is well-known that if M is a diagonal block matrix with diagonal matrices A and B, then \({\mathcal {G}}(|K|^{-1/2}\chi _K, \Lambda )\) is an orthonormal basis for \(L^2({\mathbb {R}}^d)\) if and only if K tiles both by \(A({\mathbb {Z}}^d)\) and \(B^{-t}({\mathbb {Z}}^d)\). However, there has not been any intensive study when M is not a diagonal matrix. We investigate this problem for a large class of important cases of M. In particular, if M is any lower block triangular matrix with diagonal matrices A and B, we prove that if \({\mathcal {G}}(|K|^{-1/2}\chi _K, \Lambda )\) is an orthonormal basis, then K can be written as a finite union of fundamental domains of \(A({{\mathbb {Z}}}^d)\) and at the same time, as a finite union of fundamental domains of \(B^{-t}({{\mathbb {Z}}}^d)\). If \(A^tB\) is an integer matrix, then there is only one common fundamental domain, which means K tiles by a lattice and is spectral. However, surprisingly, we will also illustrate by an example that a union of more than one fundamental domain is also possible. We also provide a constructive way for forming a Gabor window function for a given upper triangular lattice. Our study is related to a Fuglede’s type problem in Gabor setting and we give a partial answer to this problem in the case of lattices.

  相似文献   

11.
The purpose of this paper is threefold. First, we prove sharp singular affine Moser–Trudinger inequalities on both bounded and unbounded domains in \({\mathbb {R}}^{n}\). In particular, we will prove the following much sharper affine Moser–Trudinger inequality in the spirit of Lions (Rev Mat Iberoamericana 1(2):45–121, 1985) (see our Theorem 1.4): Let \(\alpha _{n}=n\left( \frac{n\pi ^{\frac{n}{2}}}{\Gamma (\frac{n}{2}+1)}\right) ^{\frac{1}{n-1}}\), \(0\le \beta <n\) and \(\tau >0\). Then there exists a constant \(C=C\left( n,\beta \right) >0\) such that for all \(0\le \alpha \le \left( 1-\frac{\beta }{n}\right) \alpha _{n}\) and \(u\in C_{0}^{\infty }\left( {\mathbb {R}}^{n}\right) \setminus \left\{ 0\right\} \) with the affine energy \(~{\mathcal {E}}_{n}\left( u\right) <1\), we have
$$\begin{aligned} {\displaystyle \int \nolimits _{{\mathbb {R}}^{n}}} \frac{\phi _{n,1}\left( \frac{2^{\frac{1}{n-1}}\alpha }{\left( 1+{\mathcal {E}}_{n}\left( u\right) ^{n}\right) ^{\frac{1}{n-1}}}\left| u\right| ^{\frac{n}{n-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( n,\beta \right) \frac{\left\| u\right\| _{n}^{n-\beta }}{\left| 1-{\mathcal {E}}_{n}\left( u\right) ^{n}\right| ^{1-\frac{\beta }{n}}}. \end{aligned}$$
Moreover, the constant \(\left( 1-\frac{\beta }{n}\right) \alpha _{n}\) is the best possible in the sense that there is no uniform constant \(C(n, \beta )\) independent of u in the above inequality when \(\alpha >\left( 1-\frac{\beta }{n}\right) \alpha _{n}\). Second, we establish the following improved Adams type inequality in the spirit of Lions (Theorem 1.8): Let \(0\le \beta <2m\) and \(\tau >0\). Then there exists a constant \(C=C\left( m,\beta ,\tau \right) >0\) such that
$$\begin{aligned} \underset{u\in W^{2,m}\left( {\mathbb {R}}^{2m}\right) , \int _{ {\mathbb {R}}^{2m}}\left| \Delta u\right| ^{m}+\tau \left| u\right| ^{m} \le 1}{\sup } {\displaystyle \int \nolimits _{{\mathbb {R}}^{2m}}} \frac{\phi _{2m,2}\left( \frac{2^{\frac{1}{m-1}}\alpha }{\left( 1+\left\| \Delta u\right\| _{m}^{m}\right) ^{\frac{1}{m-1}}}\left| u\right| ^{\frac{m}{m-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( m,\beta ,\tau \right) , \end{aligned}$$
for all \(0\le \alpha \le \left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\). When \(\alpha >\left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\), the supremum is infinite. In the above, we use
$$\begin{aligned} \phi _{p,q}(t)=e^{t}- {\displaystyle \sum \limits _{j=0}^{j_{\frac{p}{q}}-2}} \frac{t^{j}}{j!},\,\,\,j_{\frac{p}{q}}=\min \left\{ j\in {\mathbb {N}} :j\ge \frac{p}{q}\right\} \ge \frac{p}{q}. \end{aligned}$$
The main difficulties of proving the above results are that the symmetrization method does not work. Therefore, our main ideas are to develop a rearrangement-free argument in the spirit of Lam and Lu (J Differ Equ 255(3):298–325, 2013; Adv Math 231(6): 3259–3287, 2012), Lam et al. (Nonlinear Anal 95: 77–92, 2014) to establish such theorems. Third, as an application, we will study the existence of weak solutions to the biharmonic equation
$$\begin{aligned} \left\{ \begin{array}{l} \Delta ^{2}u+V(x)u=f(x,u)\text { in }{\mathbb {R}}^{4}\\ u\in H^{2}\left( {\mathbb {R}}^{4}\right) ,~u\ge 0 \end{array} \right. , \end{aligned}$$
where the nonlinearity f has the critical exponential growth.
  相似文献   

12.
Let \({C={\rm inf} (k/n)\sum_{i=1}^n x_i(x_{i+1}+\cdots+x_{i+k})^{-1}}\), where the infimum is taken over all pairs of integers \({n\geq k\geq 1}\) and all positive \({x_1,\ldots,x_n}\), \({x_{n+i}=x_i}\). We prove that \({\ln 2 \leq C < 0.9305}\). In the definition of the constant C, the operation \({{\rm inf}_{k}\, {\rm inf}_{n}\, {\rm inf}_{x}}\) can be replaced by \({{\rm lim}_{k \to \infty}\, {\rm lim}_{n \to \infty} {\rm inf}_{x}}\).  相似文献   

13.

We consider the existence and uniqueness of solutions to initial value problems for general linear nonhomogeneous equations with several Riemann–Liouville fractional derivatives in Banach spaces. Considering the equation solved for the highest fractional derivative \( D^{\alpha}_{t} \), we introduce the concept of the defect \( m^{*} \) of a Cauchy type problem which determines the number of the zero initial conditions \( D^{\alpha-m+k}_{t}z(0)=0 \), \( k=0,1,\dots,m^{*}-1 \), necessary for the existence of the finite limits \( D^{\alpha-m+k}_{t}z(t) \) as \( t\to 0+ \) for all \( k=0,1,\dots,m-1 \). We show that the defect \( m^{*} \) is uniquely determined by the set of orders of the Riemann–Liouville fractional derivatives in the equation. Also we prove the unique solvability of the incomplete Cauchy problem \( D^{\alpha-m+k}_{t}z(0)=z_{k} \), \( k=m^{*},m^{*}+1,\dots,m-1 \), for the equation with bounded operator coefficients solved for the highest Riemann–Liouville derivative. The obtained result allowed us to investigate initial problems for a linear nonhomogeneous equation with a degenerate operator at the highest fractional derivative, provided that the operator at the second highest order derivative is 0-bounded with respect to this operator, while the cases are distinguished that the fractional part of the order of the second derivative coincides or does not coincide with the fractional part of the order of the highest derivative. The results for equations in Banach spaces are used for the study of initial boundary value problems for a class of equations with several Riemann–Liouville time derivatives and polynomials in a selfadjoint elliptic differential operator of spatial variables.

  相似文献   

14.
Ge  Bin  Lv  De-Jing 《Acta Appl Math》2020,166(1):85-109

We are concerned with the following \(p(x)\)-Laplacian equations in \(\mathbb{R}^{N}\)

$$ -\triangle _{p(x)} u+|u|^{p(x)-2}u= f(x,u)\quad \mbox{in } \mathbb{R} ^{N}. $$

The nonlinearity is superlinear but does not satisfy the Ambrosetti-Rabinowitz type condition. Our main difficulty is that the weak limit of (PS) sequence is not always the weak solution of this problem. To overcome this difficulty, by adding potential term and using mountain pass theorem, we get the weak solution \(u_{\lambda }\) of perturbation equations. First, we prove that \(u_{\lambda }\rightharpoonup u\) as \(\lambda \rightarrow 0\). Second, by using vanishing lemma, we get that \(u\) is a nontrivial solution of the original problem.

  相似文献   

15.
Zhou  Jiuru 《Archiv der Mathematik》2021,116(6):693-706

In this paper, we study vanishing and splitting results on a complete smooth metric measure space \((M^n,g,\mathrm {e}^{-f}\mathrm {d}v)\) with various negative m-Bakry-Émery Ricci curvature lower bounds in terms of the first eigenvalue \(\lambda _1(\Delta _f)\) of the weighted Laplacian \(\Delta _f\), i.e., \(\mathrm {Ric}_{m,n}\ge -a\lambda _1(\Delta _f)-b\) for \(0<a\le \dfrac{m}{m-1}, b\ge 0\). In particular, we consider three main cases for different a and b with or without conditions on \(\lambda _1(\Delta _f)\). These results are extensions of Dung and Vieira, and weighted generalizations of Li-Wang, Dung-Sung, and Vieira.

  相似文献   

16.
Li  Zhongyan  Han  Deguang 《Acta Appl Math》2019,160(1):53-65

We consider the problem of characterizing the bounded linear operator multipliers on \(L^{2}(\mathbb{R})\) that map Gabor frame generators to Gabor frame generators. We prove that a functional matrix \(M(t)=[f_{ij}(t)]_{m \times m}\) (where \(f_{ij}\in L^{\infty}(\mathbb{R})\)) is a multiplier for Parseval Gabor multi-frame generators with parameters \(a, b >0\) if and only if \(M(t)\) is unitary and \(M^{*}(t)M(t+\frac{1}{b})= \lambda(t)I\) for some unimodular \(a\)-periodic function \(\lambda(t)\). As a special case (\(m =1\)) this recovers the characterization of functional multipliers for Parseval Gabor frames with single function generators.

  相似文献   

17.
Yuan  Baoquan  Li  Xiao 《Acta Appl Math》2019,163(1):207-223

This paper deals with the regularity of weak solutions to the 3D magneto-micropolar fluid equations in Besov spaces. It is shown that for \(0\le\alpha\le1\) if \(u\in L^{\frac{2}{1+\alpha}}(0,T; \dot{B}_{\infty,\infty}^{\alpha})\), then the weak solution \((u,\omega ,b)\) is regular on \((0,T]\).

  相似文献   

18.
We prove the stability of the affirmative part of the solution to the complex Busemann–Petty problem. Namely, if K and L are origin-symmetric convex bodies in \({{\mathbb C}^n}\), n = 2 or n = 3, \({\varepsilon >0 }\) and \({{\rm Vol}_{2n-2}(K\cap H) \le {\rm Vol}_{2n-2}(L \cap H) + \varepsilon}\) for any complex hyperplane H in \({{\mathbb C}^n}\) , then \({({\rm Vol}_{2n}(K))^{\frac{n-1}n}\le({\rm Vol}_{2n}(L))^{\frac{n-1}n} + \varepsilon}\) , where Vol2n is the volume in \({{\mathbb C}^n}\) , which is identified with \({{\mathbb R}^{2n}}\) in the natural way.  相似文献   

19.

In this paper, we study the Cauchy problem for the Benjamin-Ono-Burgers equation \({\partial _t}u - \epsilon \partial _x^2u + {\cal H}\partial _x^2u + u{u_x} = 0\), where \({\cal H}\) denotes the Hilbert transform operator. We obtain that it is uniformly locally well-posed for small data in the refined Sobolev space \({\tilde H^\sigma }(\mathbb{R})\,\,(\sigma \geqslant 0)\), which is a subspace of L2(ℝ). It is worth noting that the low-frequency part of \({\tilde H^\sigma }(\mathbb{R})\) is scaling critical, and thus the small data is necessary. The high-frequency part of \({\tilde H^\sigma }(\mathbb{R})\) is equal to the Sobolev space Hσ (ℝ) (σ ⩾ 0) and reduces to L2(ℝ). Furthermore, we also obtain its inviscid limit behavior in \({\tilde H^\sigma }(\mathbb{R})\) (σ ⩾ 0).

  相似文献   

20.
In this paper, we consider the initial value problem for the nonlinear fractional differential equations
$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} D^\alpha u(t)=f(t,u(t),D^{\beta _1}u(t),\ldots ,D^{\beta _N}u(t)), \quad &{}t\in (0,1],\\ D^{\alpha -k}u(0)=0, \quad &{}k=1,2,\ldots ,n, \end{array} \right. \end{aligned}$$
where \(\alpha >\beta _1>\beta _2>\cdots \beta _N>0\), \(n=[\alpha ]+1\) for \(\alpha \notin \mathbb {N}\) and \(\alpha =n\) for \(\alpha \in \mathbb {N}\), \(\beta _j<1\) for any \(j\in \{1,2,\ldots ,N\}\), D is the standard Riemann–Liouville derivative and \(f:[0,1]\times \mathbb {R}^{N+1}\rightarrow \mathbb {R}\) is a given function. By means of Schauder fixed point theorem and Banach contraction principle, an existence result and a unique result for the solution are obtained,respectively. As an application, some examples are presented to illustrate the main results.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号