首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The model that takes chemical reactions, heat and mass transfers in the boundary layer of the particle into account simultaneously, is developed for simulating the combustion of a pulverized coal particle. The FTIR in situ temperature-measurements and the comparison between numerical simulations for the pulverized coal and the devolatilized char show that the volatile flame induces the combustion of the primary product of surface oxidation CO. Due to the influence of volatile flame, the char particle can be ignited at temperature lower than its heterogeneous ignition temperature, which elucidates the physical essence of joint hetero-homogeneous ignition mode discovered by Jüntgen.  相似文献   

2.
A comparative study has been made between a mixed metal (60% Ir-40%W) coated cathode and a “B” cathode during activation and also in their respective steady states. The rate limiting factor in the activation of the coated cathode is the oxidation of the initial Ba type surface to a BaO type surface. Since on the “B” cathode Ba and O emerge together, its activation is faster than the coated cathode. In the steady state of operation, both cathodes exhibit a surface near BaO stoichiometry which is the optimum composition for the minimum work function. This work function is about 0.2 eV lower on the coated cathode than on the “B” cathode. An accelerated life test at 1575 K indicated a gradual decrease of the Ir concentration in the coating.  相似文献   

3.
煤低温氧化的微区组分分析与反应性研究   总被引:1,自引:0,他引:1  
煤的低温氧化对着火性能、反应性、煤焦质量以及煤的自燃有重要影响.本文通过TGA-DSC、FSEM和EBSP研究了烟煤和无烟煤的低温氧化特性,研究表明:活性较高的煤表面固相氧的浓度增量比热重低温段的表观增重量大得多;根据最大吸氧量确定的着火温度随煤变质程度的加深和升温速率的增加而增加;升温速率小于1/12 K/s时,最大氧化速率和最大吸氧量能代表煤的氧化活性;含灰量低的中等变质程度的煤氧化活性最高;化学吸氧经历了从临界活化能、到活化能减小再增加到极大最后吸附终止的过程.  相似文献   

4.
Smouldering combustion of natural fuel layers such as peatlands leads to the largest fires on Earth and posses a possible positive feedback mechanism to climate change. In this paper, we use an experimental methodology to study the smouldering combustion of samples of peat under a wide range burning conditions. Vertical samples (30 mm deep and 125 mm in diameter) are ignited by radiation on the top free surface and the smouldering front propagates downward against a forced flow of oxidizer. By varying the oxygen concentration ([O2]) and the ignition conditions we investigate the competing pyrolysis and oxidation reactions. A reaction framework with two regimes is consistently observed. The measurements show that a char species is formed by the competing pyrolysis and oxidation reactions in the first regime resulting in net char production and in the second regime char oxidation results in conversion of the char to ash. Lower mass loss rates and the larger residual mass at lower [O2] suggest that a wider smouldering front is required to sustain combustion as the [O2] is decreased. These results improve our understanding of smouldering phenomena and the role of the competing chemical reactions.  相似文献   

5.
Flame stabilization during non-premixed combustion in curved ducts with a diameter of the order of magnitude of the premixed flame thickness of the reactants was investigated experimentally, since it has been established that this is a configuration with potential advantages in the context of “micro”-combustion. It was shown that, in such “mesoscale” tubes, a stable flame oscillation including extinction/re-ignition phenomena can be established for steady boundary conditions. These oscillations lead, under appropriate conditions, to sound emission in the 50–350 Hz range. This was a mode of stabilization in addition to the “classical” steady flamelet, stabilized through thermal losses to the duct walls at higher values of the Reynolds number. Curvature of the duct was shown to have minimal effect on reactant mixing, which was diffusion-controlled, but significantly affected flame thickness and stabilization. To probe the fuel-oxidizer mixing in the U-shaped, optically accessible tubes, laser induced fluorescence of acetone fuel dopant was used, and the flame structure was studied using OH PLIF. The various stabilization regimes are discussed in terms of the Reynolds and Dean numbers of the tube flow.  相似文献   

6.
Formation of NO initiated by heterogeneous fixation of N2 during pyrolysis is investigated experimentally and theoretically. The experiments were conducted with beech wood as well as with the pure biomass components cellulose, xylan, and lignin. The NO formation during char oxidation was recorded as function of pyrolysis atmosphere (N2 or Ar), pyrolysis temperature (700–1050 °C), and oxidizing atmosphere (O2 in N2 or Ar). The results confirm earlier reports that biomass char may be enriched in N during pyrolysis at 900 °C and above. The N-uptake involves re-capture of N-volatiles as well as uptake of N2. During char oxidation, the captured N is partly oxidized to NO, resulting in increased NO formation. The NO yield from oxidation of beech wood char made in N2 increases with pyrolysis temperature, and is about a factor of two higher at 1050 °C than the corresponding yield from chars made in Ar. The experiments with pure materials show that the lignin char has the strongest ability to form NO from uptake of N2, while xylan char forms only small amounts of NO from N2. Density Functional Theory (DFT) calculations on model chars have revealed a number of chemisorption sites for N2, many of which are weakly bound and therefore expected to have a short half-life at the higher pyrolysis temperatures. However, the chemisorption of N2 across a single ring of the armchair surface was found to have an activation energy of 344 ± 30 kJ mol−1 and form a stable, exothermic product with cyano groups. This demonstrates that at least one channel exists for the high-temperature incorporation of N2 into a char which could give rise to the observed increase in NO release in subsequent char oxidation.  相似文献   

7.
This work investigated the combustion characteristics of single pulverized biomass-derived char particles. The char particles, in the size range 224–250 µm, were prepared in a drop tube furnace at pyrolysis temperatures of 1273 or 1473 K from four types of biomass particles – wheat straw, grape pomace, kiwi branches and rice husk. Subsequently, the char particles were injected upward into a confined region of hot combustion products produced by flat flames stabilized on a McKenna burner, with mean temperatures of 1460, 1580 and 1670 K and mean O2 concentrations of 4.5, 6.5 and 8.5 vol%. The data reported include particle temperature, obtained using a two-color pyrometry technique, and potassium release rate, measured using a laser-induced photofragmentation fluorescence imaging technique. In addition, particle ignition delay time and burning time, obtained from the temporal evolution of the thermal radiation intensity of the burning char particles, are also reported. The results indicated that ignition of the char particles occurs simultaneously with the starting of the potassium release, then the particle burning intensity increases rapidly until it reaches a maximum, after which both the particle temperature and the potassium release rate remain approximately constant until the end of the char oxidation process. The char ignition process is temperature controlled, and the char oxidation process is oxygen diffusion controlled, with the total potassium release being independent of the oxygen concentration and the temperature of the combustion products. The combustion behavior of the chars studied is more affected by the char type than by the conditions used to prepare them.  相似文献   

8.
An experimental study on ignition and combustion of single particles was conducted at normal gravity (1-g) and microgravity (μ-g) for three high volatile coals with initial diameter of 1.5 and 2.0 mm, respectively. The non-intrusive twin-color pyrometry method was used to retrieve the surface temperature of the coal particle through processing the images taken by a color CCD camera. At the same time, a mathematical model considering thermal conduction inside the coal particle was developed to simulate the ignition process.Both experiments and modeling found that ignition occurred homogeneously at the beginning and then heterogeneously for the testing coal particles burning at μ-g. Experimental results confirmed that ignition temperature decreased with increasing volatile content and increasing particle size. However, contradicted to previous studies, this study found that for a given coal with certain particle size, ignition temperature was about 50–80 K lower at μ-g than that at 1-g.The model predictions agreed well with the μ-g experimental data on ignition temperature. The criterion that the temperature gradient in the space away from the particle surface equaled to zero was validated to determine the commence of homogeneous ignition. Thermal conduction inside the particle could have a noticeable effect for determining the ignition temperature. With the consideration of thermal conduction, the critical size for the phase transient from homogeneous to heterogeneous is about 700 μm at ambient temperature 1500 K and oxygen concentration 0.23.  相似文献   

9.
This study integrates new and existing numerical modeling and experimental observations to provide a consistent explanation to observations pertaining flame length and soot volume fractions for laminar diffusion flames. Integration has been attempted by means of scaling analysis. Emphasis has been given to boundary layer flames. For the experiments, ethylene is injected through a flat porous burner into an oxidizer flowing parallel to the burner surface. The oxidizer is a mixture of oxygen and nitrogen, flowing at various velocities. All experiments were conducted in microgravity to minimize the role of buoyancy in distorting the aerodynamics of the flames. A previous numerical study emphasizing fuel transport was extended to include the oxidizer flow. Fictitious tracer particles were used to establish the conditions in which fuel and oxidizer interact. This allowed establishing regions of soot formation and oxidation as well as relevant characteristic length and time scales. Adequate scaling parameters then allow to establish explanations that are consistent for different burner configurations as well as “open-tip” and “closed-tip” flames.  相似文献   

10.
A case for the project of excising of confusion and obfuscation in the contemporary quantum theory initiated and promoted by David Deutsch has been made. It has been argued that at least some theoretical entities which are conventionally labelled as “interpretations” of quantum mechanics are in fact full-blooded physical theories in their own right, and as such are falsifiable, at least in principle. The most pertinent case is the one of the so-called “Many-Worlds Interpretation” (MWI) of Everett and others. This set of idea differs from other “interpretations” since it does not accept reality of the collapse of Schrödinger’s wavefunction. A survey of several important proposals for discrimination between quantum theories with and without wavefunction collapse appearing from time to time in the literature has been made, and the possibilities discussed in the framework of a wider taxonomy.  相似文献   

11.
水平纤维质填充床阴燃过程的数值模拟   总被引:1,自引:0,他引:1  
对上方具有空气掠过的水平纤维质填充床的阴燃点燃及阴燃波的传播进行了数值模拟。模型中考虑了燃料的热解、氧化降解和炭的氧化反应,并将热解和氧化降解气体产物分成CO、CO2、H2、H2O和CH4,填充床表面及其上方设CO气相氧化反应。计算表明,填充床表面的辐射散热量的大小对阴燃波结构影响很大。  相似文献   

12.
Detonability limits in thin annular channels   总被引:3,自引:0,他引:3  
In this paper, detonability limits in two-dimensional annular channels are investigated. Since the channel heights are small in comparison to the tube diameter, curvature effects can be neglected and the annular channels can be considered to be essentially two-dimensional. Mixtures that are highly diluted with argon are used since previous investigations seem to indicate that detonations in such mixtures are “stable” in that cellular instabilities play minor roles on the propagation of the detonation. For stable detonations where the ZND structure is valid, boundary layer effects can be modeled as a flow divergence term in the conservation of mass equation following the pioneering work of Fay [J.A. Fay, Phys. Fluids 2(3) (1959) 283–289]. Expansion due to flow divergence in the reaction zone results in a velocity deficit. There exists a maximum deficit when an eigenvalue detonation velocity can no longer be found, which can be taken as the onset of the detonability limits. Experimentally, it was found that unlike “unstable” detonations, the detonability limits for “stable” detonations are well-defined. No unstable near-limit phenomena (e.g., galloping detonations) was observed. Good agreement is found between the theoretical predictions and the experimentally obtained velocity deficits and limits in the two channel heights of 2.2 and 6.9 mm for hydrogen–oxygen and acetylene–oxygen mixtures diluted with over 50% argon. It may be concluded that at least for these special mixtures where the detonation is “stable,” the failure mechanism is due to flow divergence caused by the negative displacement thickness of the boundary layer behind the leading shock front of the detonation wave.  相似文献   

13.
The effect of pyrolysis conditions on char reactivity has been studied using Raman spectroscopy. This paper reports on the relationship between the properties of biomass char and the gasification rate. The gasification kinetics of biomass char have been revealed by measuring the rate of weight loss during its reaction with CO2 as a function of temperature. First-order kinetic rate constants are determined by fitting the weight loss data using a random pore model. The relationship between the char structure and CO2 gasification reactivity was investigated in the range of 15–600 °C/min at a constant pyrolysis pressure (0.1 MPa), and 0.1–3.0 MPa at a constant heating rate (15 °C/min). The experimental results reveal that the reactivity of biomass char is determined by the pyrolysis condition. The CO2 gasification rates in char generated at 0.1 MPa exhibited approximately twice the values as compared to those obtained at 3 MPa. This is because the uniformity of the carbonaceous structure increases with the pyrolysis pressure. The uniformity of carbonaceous structures would affect the CO2 gasification reactivity, and the decreasing uniformity would lead to the progression of cavities on the char surface during the CO2 gasification process. The gasification rate of biomass char increases with the heating rate at pyrolysis. This is due to the coarseness (surface morphology) of biomass char and rough texture, which increases with the heating rate.  相似文献   

14.
This work examines the combustion behavior of single pulverized biomass particles from ignition to early stages of char oxidation. The biomass residues investigated were pine wood, wheat straw, rice husk and grape pomace. The biomass particles, in the size range 224–250 µm, were injected upward into a confined region with hot combustion products, produced by a flat flame McKenna burner, with a mean temperature of 1610 K and a mean O2 concentration of 6.5 vol%. Temporally and spectrally resolved images of the single burning particles were recorded with an intensified charge-coupled device camera equipped with different band-pass spectral filters. Data are reported for CH*, C2*, Na* and K* chemiluminescence, and thermal radiation from soot and char burning particles. The data on CH* and C2* chemiluminescence and soot thermal radiation permits to identify important differences between the ignition delay time, volatiles combustion time and soot formation propensity of the four biomass residues, which are mainly affected by their volatile matter content. The Na* and K* emission signals follow the same trends of the CH* and C2* emission signals until the end of the volatiles combustion stage, beyond which, unlike the CH* and C2* emission signals, they persist owing to their release from the char burning particles. Moreover, during the volatiles combustion stage, the Na*/CH* and K*/CH* ratios present constant values for each biomass residue. The CH* and thermal radiation emission data suggest that all biomass char particles experienced heterogeneous oxidation at or immediately after the extinction of the homogeneous volatiles combustion.  相似文献   

15.
The addition of halogens, particularly iodine, to the gas during coal char oxidation has been used in previous studies to quench gas-phase chemistry, thereby allowing one to separate the effects of homogeneous and heterogeneous reactions. Halogen addition suppresses the gas-phase radicals to near-equilibrium levels. A similar effect can be expected from other compounds with high efficiency as fire suppressants, such as alkali metals. The effectiveness of the use of additives in distinguishing homogeneous and heterogeneous reactions during char oxidation relies on the assumption that radicals are suppressed while heterogeneous reactions occurring on the char surface are not affected. The present work tests this assumption for potassium bromide (KBr) and sodium carbonate (Na2CO3) reacting with a pulverized eastern bituminous coal char during oxidation. An increase in CO and a slight reduction in particle temperature were observed with the addition of KBr, consistent with known effects of halogens on gas-phase chemistry. An increase in particle size was also observed with the KBr addition. This observation and the results of model calculations suggest that there is significant incorporation of liquid KBr on the char surface under the conditions examined. With Na2CO3 addition, the particle temperature did not change, the particle size showed a slight decrease, and CO production increased. Although the mechanisms for Na interaction with radicals at combustion conditions are not well established, char oxidation modeling suggests that a decrease in OH concentration in the particle boundary layer is the cause for the observed increase in CO production. It is concluded that Na2CO3 has clear advantages over KBr for inhibiting gas-phase chemistry without affecting char oxidation for the conditions investigated here.  相似文献   

16.
17.
Thermal annealing associated with heat treatment of coal chars affects gasification reactivity and levels of unburned carbon in residual ash from coal-fired furnaces. The present study addresses the effect of char surface oxidation, occurring upon exposure to oxygen, on the course of thermal annealing, and related loss of combustion reactivity. This goal is pursued by comparing the extent of thermal annealing suffered by coal char upon heat treatment in a nitrogen atmosphere with that of chars that underwent oxidation prior to or during heat treatment. Oxidation of char was accomplished by supplying single or multiple pulses of air during the heat treatment, which were sufficient to oxidize the char surface but small enough to limit carbon gasification to less than 5%. The extent of thermal annealing was characterized both in terms of the loss of combustion reactivity and of the development of structural anisotropy of char samples, investigated by HRTEM. Results of the present study confirm that heat treatment reduces oxyreactivity of char samples, the effect being more pronounced at temperatures exceeding 1200 °C. Oxidation of samples mitigates the effects of heat treatment, as demonstrated by the smaller loss of gasification reactivity and by the more limited development of structural anisotropy of oxidized samples. Correspondingly, elemental analysis of samples indicates the formation of stable surface oxides upon oxidation, that are subsequently desorbed upon heat treatment. At temperatures exceeding 1200 °C, the effect of oxidation vanishes. Results are analysed and discussed in the light of the possible hindrance of thermal annealing due to the formation of stable surface oxides and of the parallel modifications occurring to the ash constituents.  相似文献   

18.
V.A. Marichev   《Surface science》2009,603(21):1131-60
Numerous derivations of the well-known Shuttleworth equation have been based on the unclear concept of “reversible cleavage” leading to the decisive step in any derivation - equalization of the surface free energy and surface stress. This is the key concept in contemporary surface thermodynamics of solids. But “cleavage” is not a surface process and, in this field, it cannot be a reversible operation. Besides, the “reversible cleavage” has no formal definition in the domain of the surface tension of solids that is an abnormal for any exact science. Consequently, this concept and all its corollaries including the Shuttleworth and generalized Lippmann equations have to be recognized as incorrect.  相似文献   

19.
The effect of thermal annealing on the combustion reactivity of a bituminous coal char has been investigated with a focus on the role of the formation of surface oxides by oxygen chemisorption. The combined use of thermogravimetric analysis and of analysis of the off-gas during isothermal combustion of char samples enabled the determination of the rate and extent of oxygen uptake along burn-off. Combustion was carried out at temperatures between 350 and 510 °C. Char samples were prepared by controlled isothermal heat treatment of coal for different times (in the range between 1 s and 30 min) at different temperatures (in the range 900–2000 °C). Results indicate that oxygen uptake is extensive along burn off of chars prepared under mild heat treatment conditions. The maximum oxygen uptake is barely affected by the combustion temperature within the range of combustion conditions investigated. The severity of heat treatment has a pronounced effect on char combustion rate as well as on the extent and rate at which surface oxides are built up by oxygen chemisorption. Chars prepared under severe heat treatment conditions show negligible oxygen uptake and strongly reduced combustion rates. Altogether it appears that a close correlation can be established between the extent and the accessibility of active sites on the carbon surface and the combustion rate. Despite the investigation has been carried out at temperatures well below those of practical interest, results provide useful insight into the relationship existing between thermal annealing, formation of surface oxide and combustion reactivity which is relevant to the proper formulation of detailed kinetic models of char combustion.  相似文献   

20.
A new experimental technique is proposed to measure the product CO/CO2 ratio at the surface of spherical char particles during fluidized bed combustion. It is based on the measurement of the burning rate of a single char particle under low oxygen concentration conditions and on the use of an accurate prediction of the particle Sherwood number. This technique was applied to spherical char particles obtained from a bituminous coal which is characterized by a low attrition and fragmentation propensity. The product CO/CO2 ratio was measured at a bed temperature of 850 °C and at a fluidization velocity of 0.3 m/s in a lab-scale apparatus operated with a bed of 0.5–0.6 mm sand. The char particle size was varied between 2 and 7 mm and the inlet oxygen concentration between 0.1% and 2.0%. Results showed that under the experimental conditions investigated carbon was mostly oxidized to CO2 within the particle boundary layer, with a maximum fraction of carbon escaping as CO of 10–20% at the lowest oxygen concentrations and largest particle sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号