首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The contact surface tailoring conditions normally used for shock tubes do not apply to shock tubes with different driver and driven section diameters. A theoretical model is presented that predicts the contact surface tailoring condition for a convergent shock tube, designed to have a larger driver cross-section area than the driven section. The tailoring condition previously developed for shock tubes with uniform driver and driven diameters can be recovered from this model. Representative on- and off-model performance is verified experimentally in a high-pressure convergent shock. Tailoring conditions calculated with the model are also given for commonly used driven gases (Ar, N2 and air) and He–N2 driver mixtures as a function of driver/driven area ratio.   相似文献   

2.
A dual-beam transient absorption spectrometer for high repetition rate (80 shocks per second) studies of shock compressed materials is described. The apparatus time response is 100 ps, so the time resolution of the shock compression process is generally limited by the shock transit time across the sample. In turn the sample thickness is limited by the sensitivity of the spectrometer. Using 400 nm thick samples of R640 dye aggregates in \textit{poly} methyl methacrylate (PMMA) and a 4.2 GPa laser-driven shock, transient absorption spectra show a shock induced absorption redshift occurring in 500 ps, considerably longer than the 200 ps shock front transit time (round trip) through the sample. This noninstantaneous shock compression is consistent with the $\sim 300$ ps viscoelastic response of PMMA at 4.2 GPa. Received 30 July 2001 / Accepted 13 March 2002 – Published online 17 June 2002  相似文献   

3.
The instability of a free surface of aluminum after passage of two shocks that follow one after the other at a certain time interval is studied numerically. The first shock is rather strong (the postshock pressure is about 75 GPa). It is shown that if at the moment when the second shock arrives at the free surface, the perturbation evolution is nonlinear, then, in contrast to the linear stage, the change in the growth rate of the amplitude depends weakly on the wavelength of the initial perturbation. A formula is proposed which describes the effect of the second shock on the amplitude growth rate and in which the main structure of Richtmyer's formula is preserved. It is demonstrated that the parameters of the second shock that ensure freezing of the instability can be determined using only the growth rate of the amplitude. Computing Center, Russian Academy of Sciences, Moscow 117967. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 1, pp. 28–37, January–February, 2000.  相似文献   

4.
The two-dimensional, time-dependent, reactive Navier–Stokes equations including the effects of viscosity, thermal conduction and molecular diffusion were solved to reveal the wave evolution and chemical dynamics involved in the re-initiation process. The computation was performed for hydrogen–oxygen–argon mixtures at the low initial pressure (8.00 kPa), using detailed chemical reaction model. The results show that, the decoupled leading shock reflects on the right wall of the vertical branch. High temperature and pressure behind the reflected shock induce the generation of hot spots and local explosion. Therefore, the re-initiation of gaseous detonation occurs. In the re-initiation area, there exist very high OH concentration and no H 2 concentration. However, in front of reflected shock, there exist relatively high H 2 concentration and no OH radicals. Additionally, the shock–flame interaction induces RM instability. This results in the fast mixing between hot reacted gas mixture and the relatively cold unreacted gas mixture and accelerates the chemical reactions. However, the shock–flame interaction contributes much less to the re-initiation, in contrast with shock reflection. The transition of leading shock from regular reflection to Mach reflection happens during the re-initiation. The computed evolution of wave structures involved in the re-initiation is qualitatively agreeable with that from the experimental schlieren images.   相似文献   

5.
A novel technique which uses a microfabricated shock target array assembly is described, where the passage of a shock front through a thin (0.5μm) polycrystalline layer and the subsequent unloading process is monitored in real time with ultrafast coherent Raman spectroscopy. Using a high repetition rate laser shock generation technique, high resolution, coherent Raman spectra are obtained in shocked anthracene and in a high explosive material, NTO, with time resolution of ∼ 50 ps. Spectroscopic measurements are presented which yield the shock pressure (up to 5 GPa), the shock velocity (∼ 4 km/s), the shock front risetime (t r < 25 ps), and the temperature (∼ 400°C). A brief discussion is presented, how this new technique can be used to determine the Hugoniot, the equation of state, the entropy increase across the shock front, and monitor shock induced chemical reactions in real time. Received 28 October 1996 / Accepted 12 November 1996  相似文献   

6.
The problem of the incidence of a shock wave with a front-pressure amplitude of about 30 GPa at the profiled free surface of an aluminum sample is studied. It is shown that in the case of large perturbations (amplitude 1 mm and wavelength 10 mm), jet flows occur on the free surface. The data obtained are described using a kinetic fracture model that takes into account the damage initiation and growth in the material due to tensile stress and shear strain. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 1, pp. 16–23, January–February, 2007.  相似文献   

7.
Two distinct oligomeric species of similar mass and chemical functionality (M w≈2,000 g/mol), one a linear methyl methacrylate oligomer (radius of gyration R g≈1.1 nm) and the other a hybrid organic–inorganic polyhedral silsesquioxane nanocage (methacryl-POSS, r≈1.0 nm), were subjected to thermal and rheological tests to compare the behaviors of these geometrically dissimilar molecules over the entire composition range. The glass transition temperatures of the blends varied monotonically between the glass transition temperatures of the pure oligomer (T g=−47.3°C) and the pure POSS (T g=−61.0°C). Blends containing high POSS contents (with volume fraction φ POSS≥0.90) exhibited enhanced enthalpy relaxation in differential scanning calorimetry (DSC) measurements, and the degree of enthalpy relaxation was used to calculate the kinetic fragility indices m of the oligomeric MMA (m=59) and the POSS (m=74). The temperature dependences of the viscosities were fitted by the free-volume based Williams–Landel–Ferry (WLF) and Vogel–Fulcher–Tammann (VFT) framework and a dynamic scaling relation. The calculated values of the fragility from the WLF–VFT fits were similar for the POSS (m=82) and for the oligomer (m=76), and the dynamic scaling exponent was similar for the oligomeric MMA and the POSS. Within the range of known fragilities for glass-forming liquids, the temperature dependence of the viscosity was found to be similarly fragile for the two species. The difference in shape of the nanocages and oligomer chains is unimportant in controlling the glass-forming properties of the blends at low volume fractions (φ POSS<0.20). However, at higher volume fractions, adjacent POSS cages begin to crowd each other, leading to an increase in the fractional free volume at the glass transition temperature and the observed enhanced enthalpy relaxation in DSC.  相似文献   

8.
The seismic energy transferred to an elastic half-space as a result of a contact explosion and a meteorite impact on a planet’s surface is estimated. The seismic efficiency of the explosion and impact are evaluated as the ratio of the energy of the generated seismic waves to the energy of explosion or the kinetic energy of the meteorite. In the case of contact explosions, this ratio is in the range of 10−4–10−3. In the case of wide-scale impact effects, where the crater in the planet’s crust is produced in the gravitational regime, a formula is derived that relates the seismic efficiency of an impact to its determining parameters. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 2, pp. 3–12, March–April, 2007.  相似文献   

9.
The influence of inert and chemically reactive additives in the form of microdrops on the dynamics of a single bubble filled with an active gas mixture and collapsing under the action of a shock wave is considered. The development of a reaction during formation of the mixture is analyzed for instantaneous and dynamic evaporation of drops with allowance for various phases of their injection t inj . It is shown that in instantaneous evaporation, an increase in the fraction of gaseous argon in the H2+O2 system raises the final temperature of the system under cryogenic conditions, lowers it under ordinary conditions, and causes appreciable oscillations of the values of γ, heat release, and molecular weight. It is noted that there are values of t inj and D0 at which the final temperature of the mixture decreases practically to the initial temperature. Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 2, pp. 119–127, March–April. 1999.  相似文献   

10.
In the present investigation, vorticity distribution of a particle over the normal diffracted shock has been obtained for monoatomic gases, CO2 and SF6. Further some results using Lighthill’s theory (Lighthill in Proc R Soc A 198:454–470, 1949) and Whitham’s theory (Whitham in J Fluid Mech 2:145–171, 1957) have been obtained.  相似文献   

11.
The results of an experimental and numerical investigation of the process of diffraction of shock waves from a square channel at a ninety-degree convex corner are presented for various incident shock wave Mach numbers M0 (1.4<M0<7). The type of reflection of the near-wall fragment of the diffracting shock wave from the wall and the wave velocity are determined as functions of M0, direction, and time. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 145–151, January–February, 2000. The work was carried out with partial support from the Russian Foundation for Basic Research (project No. 96-02-16170a).  相似文献   

12.
The modified nonlinear relations for the estimation of elastic constants of Al2O3–NiAl composite material are developed. The concept of microstructure and interconnectivity of phases at the interface is used. Hashin–Shtrikman relations are described in their actual form and modified version of Hashin–Shtrikman relations for bulk and shear moduli are discussed. These relations for elastic and mechanical properties are applied mainly for Al2O3–NiAl composite material. Theoretical predictions using modified relations are compared with Hashin–Shtrikman bounds and experimental results of elastic properties for Al2O3–NiAl matrix-inclusion-based composite. It is found that the predicted values of elastic and mechanical properties using modified relations are quite close to the experimental results.  相似文献   

13.
The static and dynamic compaction of ceramic powders was investigated experimentally using a high-pressure friction-compensated press to achieve static stresses of 1.6 GPa and with a novel gas gun setup to stresses of 5.9 GPa for a tungsten carbide powder. Experiments were performed in the partial compaction region to nearly full compaction. The effects of variables including initial density, particle size distribution, particle morphology, and loading path were investigated in the static experiments. Only particle morphology was found to significantly affect the compaction response. Post-test examination of the powder reveals fracture of the grains as well as breaking at particle edges. In dynamic experiments, steady structured compaction waves traveling at very low velocities were observed. The strain rate within the compaction waves was found to scale nearly linearly with the shock stress, in contrast with many fully dense materials where strain rate scales with stress to the fourth power. Similar scaling is found for data from the literature on TiO2 powder. The dynamic response of WC powder is found to be significantly stiffer than the static response, probably because deformation in the dynamic case is confined to the relatively narrow compaction wave front. Comparison of new static powder compaction results with shock data from the literature for SiO2 also reveals a stiffer dynamic response.  相似文献   

14.
Shock tube study of n-decane ignition at low pressures   总被引:1,自引:0,他引:1  
Ignition delay times for n-decane/O 2 /Ar mixtures were measured behind reflected shock waves using endwall pressure and CH* emission measurements in a heated shock tube. The initial postshock conditions cover pressures of 0.09-0.26 MPa, temperatures of 1 227-1 536 K, and oxygen mole fractions of 3.9%-20.7% with an equivalence ratio of 1.0. The correlation formula of ignition delay dependence on pressure, temperature, and oxygen mole fraction was obtained. The current data are in good agreement with available low-pressure experimental data, and they are then compared with the prediction of a kinetic mechanism. The current measurements extend the kinetic modeling targets for the n-decane combustion at low pressures.  相似文献   

15.
利用人工合成的多晶材料研究了镍锗尖晶石在扩散域的高温蠕变性质。材料颗粒尺寸为0.5μm到8μm,压缩试件为圆柱状,使用气体介质围压试验机。常压蠕变试验过程中,围压为300MPa,温度为1123K到1523K,差应力在55-330MPa范围内。从实验结果得到的镍锗尖晶石在扩散域的流动律表明流动机制为颗粒边界的扩散蠕变(Coble蠕变)。将橄榄石和尖晶石的蠕变数据外推到地球内部条件,粗粒时尖晶石强度远大于橄榄石,粒度减小时,尖晶石比橄榄石还要弱。  相似文献   

16.
The problem of shock-wave compaction of a metal powder enclosed in a metal container with a transverse partition is solved. A model of wave formation on the partition and in the compact adjacent to the partition is proposed; the model is based on the loss of strength in the powder due to collapsing of pores and to development of instability of the partition being compressed in the shock wave. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 1, pp. 119–130, January–February, 2006.  相似文献   

17.
Direct numerical simulations of the evolution of disturbances in a viscous shock layer on a flat plate are performed for a free-stream Mach number M = 21 and Reynolds number Re L = 1.44 · 105. Unsteady Navier-Stokes equations are solved by a high-order shock-capturing scheme. Processes of receptivity and instability development in a shock layer excited by external acoustic waves are considered. Direct numerical simulations are demonstrated to agree well with results obtained by the locally parallel linear stability theory (with allowance for the shock-wave effect) and with experimental measurements in a hypersonic wind tunnel. Mechanisms of conversion of external disturbances to instability waves in a hypersonic shock layer are discussed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 84–91, May–June, 2007.  相似文献   

18.
19.
We perform density functional molecular dynamics simulations of liquid and solid MgSiO3 in the pressure range of 120–1600 GPa and for temperatures up to 20,000 K in order to provide new insight into the nature of the liquid–liquid phase transition that was recently predicted on the basis of decaying laser shock wave experiments [Phys. Rev. Lett. 108 (2012) 065701]. However, our simulations did not show any signature of a phase transition in the liquid phase. We derive the equation of state for the liquid and solid phases and compute the shock Hugoniot curves. We discuss different thermodynamic functions and by explore alternative interpretations of the experimental findings.  相似文献   

20.
The time and depth of vertical one-dimensional projectile penetration into sandy media in the near shore region are derived. A precise definition for the physical properties and for the behavior of the sandy medium following the projectile impact are evaluated. Three separate time intervals following projectile impact are identified. During the first 3 ms of penetration, the deviatoric friction stress is shown to be negligible and the integrated Mie–Grüneisen equation of state (or, equivalently, the Hugoniot-adiabat) may be applied to compute the normal penetration resistance force from the sand pressure. In order to compute sand pressure as a function of the sand density D by the integrated Mie–Grüneisen equation of state, the Mie–Grüneisen dimensionless constants γ0 and s and the dimensional speed of sound C 0 in the sandy medium are required. In order to illustrate the one-dimensional shock wave propagation in both wet and dry sands, Hugoniot data for wet and dry silica sands are evaluated by a three degrees of freedom algorithm to compute these required constants. The numerical results demonstrate that the amplitude of the shock wave pressure in the wet silica sand (41% porosity) is approximately one-third of the shock wave pressure amplitudes in the dry silica sands (22% and 41% porosity). In addition, the shock wave pressure dampens quicker in the wet sand than in the dry sands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号