首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The accurate calculation of the viscosity η as function of the shear rate &γdot; from capillary viscometry is still a matter of debate in the literature. In fact, this problem involves the inversion of an integral equation, which leads to multiple solutions due to the unavoidable noise present in the experimental data. The purpose of this work is to develop an efficient procedure to determine the viscosity function from experimental data of capillary flow without presenting the difficulties inherent in other methods discussed previously in the literature. The system identification procedure is used here to estimate the parameters of a viscosity model, which is appropriately selected for the fluid under study through preliminary calculations involving the apparent shear rate – shear stress data. Once the model is chosen by satisfying criteria for the fit goodness and its parameters are evaluated, a smooth and continuous function η(γdot;) is obtained in the range of experimental shear rates. The procedure proposed is also applicable to fluids in shear flow that present two Newtonian plateaus, as it is typically found in macromolecular dilute solutions. The mean value theorem of continuous functions is used to reduce significantly the computational time. Received: 15 November 1999 Accepted: 7 November 2000  相似文献   

2.
The design of a pressurized capillary rheometer operating at prescribed temperature is described to measure the viscosity of magnetic fluids (MFs) containing Fe3O4 magnetic nanoparticles (MNPs). The equipment constant of the rheometer was obtained using liquids with predetermined viscosities. Experimentally measured viscosities were used to evaluate different equations for suspension viscosities. Deviation of measured suspension viscosities from the Einstein equation was found to be basically due to the influence of spatial distribution and aggregation of Fe3O4 MNPs. By taking account of the coating layer on MNPs and the aggregation of MNPs in MFs, a modified Einstein equation was proposed to fit the experimental data. Moreover, the influence of external magnetic field on viscosity was also taken into account. Viscosities thus predicted are in good agreement with experimental data. Temperature effect on suspension viscosity was shown experimentally to be due to the shear-thinning behavior of the MFs.  相似文献   

3.
The design of a pressurized capillary rheometer operating at prescribed temperature is described to measure the viscosity of magnetic fluids (MFs) containing Fe3O4 magnetic nanoparticles (MNPs). The equipment constant of the rheometer was obtained using liquids with predetermined viscosities. Experimentally measured viscosities were used to evaluate different equations for suspension viscosities. Deviation of measured suspension viscosities from the Einstein equation was found to be basically due to the influence of spatial distribution and aggregation of Fe3O4 MNPs. By taking account of the coating layer on MNPs and the aggregation of MNPs in MFs, a modified Einstein equation was proposed to fit the experimental data. Moreover, the influence of external magnetic field on viscosity was also taken into account. Viscosities thus predicted are in good agreement with experimental data. Temperature effect on suspension viscosity was shown experimentally to be due to the shear-thinning behavior of the MFs.  相似文献   

4.
确定岩质边坡安全阈值的新方法   总被引:2,自引:0,他引:2  
应用二维离散单元程序UDEC,以黄麦岭磷矿采场岩质边坡为例,通过分析边坡质点位移矢量的变化规律,定义了边坡的极限平衡状态和破坏状态,提出一种新的确定安全速度阈值的方法,并确定了黄麦岭磷矿采场岩质边坡的安全速度阈值。分析结果表明,新方法确定的安全阈值与现场监测确定的阈值吻合得较好。因此,应用该法来确定边坡的安全阈值是可行的。  相似文献   

5.
崔雄  李鹏  赵苗苗  王建强  周江贝 《应用力学学报》2020,(2):642-646,I0012,I0013
减振阻尼材料可以改变结构的阻尼特性从而降低振动响应和声辐射水平,因而被广泛应用于飞机结构的减振降噪。本文针对减振阻尼材料的设计和应用开展了一系列试验研究,首先通过材料改性得到了不同主基料下材料的配方对阻尼性能的影响;其次配制了三种不同的约束阻尼结构,通过DMA测试对比了三种约束阻尼结构的最佳使用温度和频率范围;最后对约束阻尼结构的减振效果和粘贴布局应用进行了试验,试验结果表明,约束阻尼结构具有良好的减振效果。通过研究掌握了减振阻尼材料在材料改性、约束阻尼结构设计、粘贴布局应用等方面的一些设计方法,可为后续的进一步研究提供技术支持和参考。  相似文献   

6.
There is currently considerable interest in the development of micro-scale polymerase chain reaction (PCR) systems. Smaller sample volumes are required than for macro-scale systems, and faster process times are feasible. Although much attention has focused on the output of micro-PCR (μ-PCR), little attention has been devoted to the detailed fluid mechanics of such devices. There are many technical challenges associated with systems of these length scales.

In this paper the effect of PCR on biofluid viscosity is examined. A theoretical expression for viscosity in PCR is derived. Transmission electron microscopy is used to determine the geometry of a 240 base pair segment of an Escherichia coli (E. coli) DNA molecule and the results are used to predict the effect of PCR on biofluid viscosity.

Micro-particle image velocimetry (μ-PIV) and pressure transducer measurements of water, amplified and unamplified E. coli DNA solutions flowing in a polycarbonate microchannel are recorded. In a novel application of these established measurement techniques, the results are combined with curve fitting of a theoretical prediction for channel flow to estimate the viscosity of the E. coli solutions. The viscosity results are compared to the theoretical prediction for PCR viscosity and to measurements in a commercial viscometer. Viscosity measurements indicated no increase in fluid viscosity after PCR for a low molecular weight molecule.  相似文献   


7.
8.
In this paper, an analytical approximation of damped oscillations of some strongly non-linear, planar Hamiltonian systems is considered. To apply the Krylov–Bogoliubov–Mitropolsky method in this strongly non-linear case, we mainly provide the formal and exact solutions of the homogeneous part of the variational equations with periodic coefficients resulting from the Hamiltonian systems. It is shown that these are simply expressed in terms of the partial derivatives of the solutions, written in action-angle variables, of the Hamiltonian systems. Two examples, including a non-linear harmonic oscillator and the Morse oscillator, are presented to illustrate this extension of the method. The approximate first order solution obtained in each case is observed to be quite satisfactory.  相似文献   

9.
A new full discrete stabilized viscosity method for the transient Navier-Stokes equations with the high Reynolds number (small viscosity coefficient) is proposed based on the pressure projection and the extrapolated trapezoidal rule. The transient Navier-Stokes equations are fully discretized by the continuous equal-order finite elements in space and the reduced Crank-Nicolson scheme in time. The new stabilized method is stable and has many attractive properties. First, the system is stable for the equal-order combination of discrete continuous velocity and pressure spaces because of adding a pres- sure projection term. Second, the artifical viscosity parameter is added to the viscosity coefficient as a stability factor, so the system is antidiffusive. Finally, the method requires only the solution to a linear system at every time step. Stability and convergence of the method is proved. The error estimation results show that the method has a second-order accuracy, and the constant in the estimation is independent of the viscosity coefficient. The numerical results are given, which demonstrate the advantages of the method presented.  相似文献   

10.
A novel pressure sensor plate (normal stress sensor (NSS) from RheoSense, Inc.) was adapted to an Advanced Rheometrics Expansion System rheometer in order to measure the radial pressure profile for a standard viscoelastic fluid, a poly(isobutylene) solution, during cone–plate and parallel-plate shearing flows at room temperature. We observed in our previous experimental work that use of the NSS in cone-and-plate shearing flow is suitable for determining the first and second normal stress differences N 1 and N 2 of various complex fluids. This is true, in part, because the uniformity of the shear rate at small cone angles ensures the existence of a simple linear relationship between the pressure [i.e., the vertical diagonal component of the total stress tensor (Π22)] and the logarithm of the radial position r (Christiansen and coworkers, Magda et al.). However, both normal stress differences can also be calculated from the radial pressure distribution measured in parallel-plate torsional flows. This approach has rarely been attempted, perhaps because of the additional complication that the shear rate value increases linearly with radial position. In this work, three different methods are used to investigate N 1 and N 2 as a function of shear rate in steady shear flow. These methods are: (1) pressure distribution cone–plate (PDCP) method, (2) pressure distribution parallel-plate (PDPP) method, and (3) total force cone–plate parallel-plate (TFCPPP) method. Good agreement was obtained between N 1 and N 2 values obtained from the PDCP and PDPP methods. However, the measured N 1 values were 10–15% below the certified values for the standard poly(isobutylene) solution at higher shear rates. The TFCPPP method yielded N 1 values that were in better agreement with the certified values but gave positive N 2 values at most shear rates, in striking disagreement with published results for the standard poly(isobutylene) solution.
J. J. MagdaEmail:
  相似文献   

11.
An exact solution of the Navier-Stokes equation is constructed for the magnetohydrodynamic (MHD) flow. The flow is due to non-coaxially rotations of a porous disk with slip condition and a fluid at infinity. The solutions for steady and unsteady cases are obtained by Laplace transform method. The effects of magnetic field and slip parameters are shown and discussed.  相似文献   

12.
Electronic holography is a well-established technique used in real-time, non-contact, whole-field displacement measurements. When using the real-time, time-averaged method for vibration measurments, the quantitative interpretation of dense fringe patterns is difficult because of speckle noise. Even when speckle-reducing procedures are used, such as multiple-frame averaging or rotation of the illumination beam, the remaining speckles and decreasing visibility of higher-order Bessel fringes are serious limitations. The primary objective of this paper is to present a new realtime, interferometric method for mechanical vibration measurements and the associated quantitative interpretation. The fringe pattern obtained by this method is quasi-binary and half as dense as in the time-averaged method. The method greatly improves the overall visibility (contrast, resolution) of vibration fringe patterns without any sacrifice in the real-time capabilities. Quantitative fringe interpretation is straightforward and based on binary fringe tracking. It allows quantitative measurements in situations where the time-averaged fringe processing fails.  相似文献   

13.
14.
Recent computational analysis of entrance flows (Mitsoulis et al. 1998) suggests that the entrance pressure drop is insensitive to large changes in steady extensional viscosity-a result that directly contradicts a large body of experimental work in this area. A re-examination of entrance flows using numerical simulations is presented in this work which shows that entrance pressure drops do depend on the steady extensional viscosity, provided the extension rate in the entrance flow is large enough. Numerical simulations are presented using both the strain thinning and thickening versions of the Phan-Thien–Tanner (PTT) constitutive model. Several techniques for extracting extensional viscosity from entrance pressure are applied to the results of these simulations. The resulting predictions of extensional viscosity are compared to the steady extensional viscosity curves predicted by the PTT constitutive model used to generate the simulated pressure drop curves. The analytical techniques examined here are shown to provide reasonably accurate estimates of the steady extensional viscosity. This work also clearly demonstrates the advantage of using variable power-law coefficients for the rheological properties, used as inputs to the analyses, to capture the extensional behavior at deformation rates below the power law region more accurately. Received: 23 July 1999/Accepted: 24 November 1999  相似文献   

15.
Abstract

In this article, a new relationship is proposed for the fictitious mass of viscous dynamic relaxation (DR) method. First, incremental equations are derived for DR steps. Using transformed Gershgörin theory, a new relationship is achieved for fictitious mass of viscous DR by formulating modified time step ratio. This procedure presents a new algorithm for the viscous DR method. To evaluate the numerical efficiency of the proposed method, some 2D and 3D truss and frame structures are analyzed with elastic linear and geometrically nonlinear behaviors. Results show that by using the proposed algorithm for fictitious mass, the convergence rate of the viscous DR method is improved so that the proposed algorithm presents the structural response with lower iterations in comparison with other common DR techniques.

Communicated by Joerg Fehr.  相似文献   

16.
In this article a parametric study based on a balance between viscous drag and restoring Brownian forces is used in order to construct a nonlinear dumbbell model with a finite spring and a drag correction for a dilute polymer solution. The constitutive equations used are reasonable approximation for describing flows of very dilute polymer solutions such as those used in turbulent drag reduction. We investigate the response of an elastic liquid under extensional flows in order to explore the roles of a stress anisotropy and of elasticity in strong flows. It is found that for low Reynolds numbers, the extensional viscosity of a dilute polymer solution is governed by two parameters: a Deborah number representing the importance of the elasticity on the flow and the macromolecule extensibility that accounts for the viscous anisotropic effects caused by the macromolecule orientation. Two different asymptotic regimes are described.The first corresponds to an elastic limit in which the extensional viscosity is a function of the Deborah number and the particle volume fraction. The second is an anisotropic regime with the extensional viscosity independent of Deborah number but strongly dependent on macromolecule aspect ratio. The analysis may explain from a phenomenological point of view why few ppms of macromolecules of high molecule weight or a small volume fraction of long fibres produce important attenuation of the pressure drop in turbulent flows. On the basis of our analysis it is seen that the anisotropic limit of the extensional viscosity caused by extended polymers under strong flows should play a key role in the attenuation of flow instability and in the mechanism of drag reduction by polymer additives.  相似文献   

17.
In this paper we describe a new method for measuring damping in flexural vibration of filamentous matter, such as polymeric or metallic fibers. This method enables us to measure the damping characteristics of very thin fibers (down to lateral dimensions of a few micrometers). The fiber sample is clamped at one extremity and excited in the flexural vibration mode of a cantilever beam configuration, using a piezoelectric actuator. While the fiber sample vibrates around a flexural eigenfrequency, structural damping is determined from the measurement of the curve of phase difference between excitation and motion. This technique does not require the amplitude of the fiber motion to be determined. The phase curve is inferred from the periodic disturbance occurring when the fiber acts as a shutter for a light beam. This method can be applied to fibers of arbitrary shape and material. Examples are shown of measurements with polymer and metallic fibers. Flexural damping is evaluated at atmospheric pressure and in vacuum. The technique is validated by a comparison with polypropylene damping measurements from standard dynamic mechanical thermal analysis techniques.  相似文献   

18.
This work proposes a new numerical method for determining the shear stress, which does not need any preassumption about the exact behavior of the fluid to achieve absolute data using a parallel-plate measuring system. The ability for representing different behaviors along the entire shear-rate range makes this method particularly interesting for the study of magnetorheological (MR) fluids. In this work, the conversion factors used by the rheometer for concentric-cylinder, cone-plate, and parallel-plate measuring systems are first analyzed. This analysis shows that the software used by the rheometer is not appropriate for the quantitative characterization of non-Newtonian fluids using the parallel-plate measuring system. Therefore, a new method for conversion of the parameters measured by the rheometer to the rheological parameters of the fluid is proposed; simultaneously, this new method is compared with other correction methods proposed in the literature: the Rabinowitsch-type method and the single-point method. Finally, the proposed method is applied for the quantitative characterization of an MR fluid.  相似文献   

19.
The relaxation spectrum is estimated from dynamic experiments using Bayesian analysis and a new regularization constraint. In the Bayesian framework, a probability can be calculated for each estimate of the spectrum. This offers several advantages; (1) an optimal estimate of the relaxation spectrum may be calculated as the mean of a large number of estimates, and (2) reliable errors for the optimal estimate can be provided using the deviation of all estimates from the mean. Furthermore, the Bayesian approach (3) gives an estimate of the overall noise level of the experiment, which is usually an important but unknown parameter for the calculation of relaxation spectra from dynamic experiments by indirect methods (determining the regularization parameter), and finally, (4) the information content in a given set of experimental data can be quantified. The validity of the Bayesian approach is demonstrated using simulated data.  相似文献   

20.
由于  张伟  高翔  黄文超 《应用力学学报》2020,(2):661-665,I0014
以某型航空发动机轮盘为研究对象,分别通过数值模拟和试验测试获得结构特定振型下的模态参数;提出采用模态置信度开展模态振型的相关度评价;基于模态叠加法开展轮盘结构谐响应分析,并通过理论推导和数值仿真开展结构阻尼和激励量值对振动响应的影响规律研究。结果表明,在轮盘结构三节径振型处,共振频率计算结果与测试结果相差1.7%,验证了模态测试的正确性。模态振型置信度为0.999,说明模态测试与仿真结果吻合较好。通过谐响应分析得到轮盘最危险点的幅频曲线,并基于数值仿真验证了轮盘结构振动响应幅值与模态阻尼呈反比、与激励量值呈正比的理论推导的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号