首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. Ciccarelli  B. de Witt 《Shock Waves》2006,15(3-4):259-265
Results from an experimental investigation of the interaction of a “non-ideal” shock wave and a single obstacle are reported. The shock wave is produced ahead of an accelerated flame in a 14 cm inner-diameter tube partially filled with orifice plates. The shock wave interacts with a single larger blockage orifice plate placed 15–45 cm after the last orifice plate in the flame acceleration section of the tube. Experiments were performed with stoichiometric ethylene–oxygen mixtures with varying amounts of nitrogen dilution at atmospheric pressure and temperature. The critical nitrogen dilution was found for detonation initiation. It is shown that detonation initiation occurs if the chemical induction time based on the reflected shock state is shorter than the time required for an acoustic wave to traverse the orifice plate upstream surface, from the inner to the outer diameter. The similarity between the present results and those obtained from previous investigators looking at detonation initiation by ideal shock reflection produced in a shock tube indicates that the phenomenon is not sensitive to the detailed structure of the shock front but only on the average shock strength.This paper is based on work that was presented at the 20th International Colloquium on the Dynamics of Explosions and Reactive Systems, Montreal, Canada, July 31–August 5, 2005.  相似文献   

2.
Experiments were carried out to investigate the combustion propagation phenomenon in a horizontal channel partially filled with ceramic-oxide spherical beads. A 1.22 m long, 43 mm nominally thick layer of spherical beads is located at the ignition end of a 2.44 m long, 76 mm square channel. Tests were performed with 6.4 and 12.7 mm diameter beads. A flame is ignited at the bead end wall by an automotive spark ignition system. Flame propagation and pressure measurements are obtained via ionization probes and piezoelectric pressure transducers mounted on the top and bottom surfaces of the channel. High-speed schlieren video was used to visualize the structure of the explosion front. Experiments were performed with a 31% nitrogen diluted stoichiometric methane–oxygen mixture at room temperature and at an initial pressure in the range of 15–50 kPa. For initial pressures of 15 and 20 kPa the flame accelerates to a velocity close to the speed of sound in the combustion products. For initial pressure of 30 kPa and higher DDT occurs in the gap above the bead layer. An explosion front propagating at a velocity just under the CJ detonation velocity is detected in the bead layer even though the bead layer pore size is much smaller than the detonation cell size. It is demonstrated that flame propagation within the bead layer is the driving force behind the very rapid flame acceleration observed, however the DDT event occurring in the gap above the bead layer is not affected by the bead layer porosity. Schlieren video indicates that the structure of the explosion front varies across the channel height and with propagation distance down the channel.  相似文献   

3.
The effect of initial pressure on aluminum particles–air detonation was experimentally investigated in a 13 m long, 80 mm diameter tube for 100 nm and 2 μm spherical particles. While the 100 nm Al–air detonation propagates at 1 atm initial pressure in the tube, transition to the 2 μm aluminum–air detonation occurs only when the initial pressure is increased to 2.5 atm. The detonation wave manifests itself in a spinning wave structure. An increase in initial pressure increases the detonation sensitivity and reduces the detonation transition distance. Global analysis suggests that the tube diameter for single-head spinning detonation or characteristic detonation cell size would be proportional to (d 0: aluminum particle size, p 0: initial pressure). Its application to the experimental data results in m ~ O(1) and n ~ O(1) for 1 to 2 μm aluminum–air detonation, thus indicating a strong dependence on initial pressure and gas-phase kinetics for the aluminum reaction mechanism in detonation. Hence, combustion models based on the fuel droplet diffusion theory may not be adequate in describing micrometric aluminum–air detonation initiation, transition and propagation. For 2 μm aluminum–air mixtures at 2 atm initial pressure and below, experiments show a transition to a “dust quasi-detonation” that propagates quasi-steadily with a shock velocity deficit nearly 40% with respect to the theoretical C–J detonation value. The dust quasi- detonation wave can propagate in a tube with a diameter less than 0.4–0.5 times the diameter required for a spinning detonation wave.  相似文献   

4.
Results of experimental study on DDT in a smooth tube filled with sensitive mixtures having detonation cell size from 1 to 3 orders of magnitude smaller than the tube diameter are presented. Stoichiometric hydrogen–oxygen mixtures were used in the tests with initial pressure ranging from 0.2 to 8 bar. A dependence of the run-up distance to DDT on the initial pressure is studied. This dependence is found to be close to the inverse proportionality. It is suggested that the flow ahead of the flame results in formation of the turbulent boundary layer. This boundary layer controls the scale of turbulent motions in the flow. A simple model to estimate the maximum scale of the turbulent pulsations (boundary layer thickness) at flame positions along the tube is presented. The largest scale of the turbulent motions at the location of the onset of detonation is shown to be 1 order of magnitude greater than the detonation cell widths, λ, in all the tests. It is suggested that the onset of detonation is triggered during flame acceleration as soon as the maximum scale of the turbulent pulsations increases up to about 10 λ. The model to estimate the maximum size of turbulent motions, δ, and the correlation δ≈ 10λ, give a basis for estimations of the run-up distances to DDT in tubes with internal diameter D > 20λ. PACS 47.40.-x; 47.27.Nz This paper was based on work that was presented at the 19th Inter-national Colloquium on the Dynamics of Explosions and Reactive Systems, Hakone, Japan, July 27 - August 1, 2003  相似文献   

5.
可爆性气体爆炸极限和爆燃转变成爆轰的研究   总被引:15,自引:3,他引:15  
胡栋  龙属川 《爆炸与冲击》1989,9(3):266-275
我们成功地研制了长为6.6m、内径为100mm的柱形爆炸激波管。利用此激波管我们研究了氢气和氧气混合物的爆炸特性。研究表明:氢气和氧气混合物的可爆性极限为25%H2至84%H2(体积比);混合物起爆的临界初始压力P0c近似与混合物的浓度无关。我们还用石英传感器技术测量了混合物从爆燃转变为爆轰的过程(DDT),确定了爆炸速度、爆炸压力与混合物初始压力P0的关系。爆燃波速度D和压力P快速增加,并且DG0(声速)时,爆燃波能转变成爆轰。爆燃波速度D和压力P衰减时,爆燃波将熄灭。氢氧混合物浓度接近上限时,爆燃向爆轰转变时的爆轰呈过激励状态,然后逐渐趋于正常爆轰。C-J理论可近似预估气体爆轰参数。  相似文献   

6.
The two-dimensional, time-dependent, reactive Navier–Stokes equations including the effects of viscosity, thermal conduction and molecular diffusion were solved to reveal the wave evolution and chemical dynamics involved in the re-initiation process. The computation was performed for hydrogen–oxygen–argon mixtures at the low initial pressure (8.00 kPa), using detailed chemical reaction model. The results show that, the decoupled leading shock reflects on the right wall of the vertical branch. High temperature and pressure behind the reflected shock induce the generation of hot spots and local explosion. Therefore, the re-initiation of gaseous detonation occurs. In the re-initiation area, there exist very high OH concentration and no H 2 concentration. However, in front of reflected shock, there exist relatively high H 2 concentration and no OH radicals. Additionally, the shock–flame interaction induces RM instability. This results in the fast mixing between hot reacted gas mixture and the relatively cold unreacted gas mixture and accelerates the chemical reactions. However, the shock–flame interaction contributes much less to the re-initiation, in contrast with shock reflection. The transition of leading shock from regular reflection to Mach reflection happens during the re-initiation. The computed evolution of wave structures involved in the re-initiation is qualitatively agreeable with that from the experimental schlieren images.   相似文献   

7.
The sequential detonation of a layer of explosive surrounding a pressurized tube can be used to generate fast, high-density shock waves by means of a piston-like implosive pinch travelling at the detonation velocity of the explosive. A novel technique has been developed to extend the regime of operation to piston velocities greater than the detonation velocity of known explosives. This technique consists of cutting a slit in the tamper of a conventional explosive shock tube and introducing a phased detonation wave into the explosive cladding. Preliminary results indicate that quasi-steady shocks can be generated in helium with velocities between 13–17 km/s for initial fill pressures of 6.9 MPa.  相似文献   

8.
A study on jet initiation of detonation using multiple tubes   总被引:1,自引:0,他引:1  
K. Ishii  T. Tanaka 《Shock Waves》2005,14(4):273-281
A detonator consisting of a dense bundle of small-diameter tubes (4.4–19 mm) is tested experimentally using stoichiometric mixtures of hydrogen–oxygen and hydrogen–air. Tests are conducted in a 5,200-mm long detonation tube fitted with a schlieren photograph section and smoked foil to record the deflagration to detonation (DDT) transition. It is confirmed that the flame jet emanating from the tube assembly causes detonation initiation immediately downstream of the detonator, with little dependence on the size of the detonation tube. For the fuel–air mixture, the insertion of Shchelkin spirals into each of the smaller tubes enhances the development of the turbulent flame jet, leading to a shorter DDT distance. Multi-point spark ignition is also shown to provide a further reduction in the DDT distance compared to single-point ignition. PACS 47.40.-x; 47.40.Nm; 47.70.Fw; 82.40.-g; 82.40.Fp  相似文献   

9.
Detonation experiments in H2–NO2/N2O4–Ar mixtures (Equivalence ratio 1.2 and initial pressure lower than 0.1 MPa) confined in a tube of internal diameter 52 mm reveal two propagation regimes depending on initial pressure: (1) a quasi-CJ regime is observed along with a double cellular structure at high pressures; (2) at lower pressures, a low velocity detonation regime is observed with a single structure. Transition between this two regimes happens when the spinning detonation of the larger cell vanishes. Each detonation regime is characterized by velocity and pressure measurements and cellular structure records. Coherence between all experimental data for each experiment leads in assumption that losses are responsible for the transition between one regime to another. In a second part, we study such behaviour for a two-step mixture through numerical simulations using a global two-step chemical kinetics and a simple losses model. Numerical simulations qualitatively agree with experiments. Both detonation regimes with their own cellular structures are reproduced.  相似文献   

10.
An experimental investigation was performed to establish the dependence of concentration limits of detonation re-initiation behind a multi-orifice plate on mixture composition and initial pressure for hydrogen–air mixtures. The experiments were carried out in detonation tubes of diameter 106 and 141 mm, separated by a multi-orifice plate into two sections. The tubes were equipped with pressure gauges and a semi-cylindrical smoked plate. It is shown that initial pressure has strong influence on the value of concentration limit, especially for lean hydrogen–air mixtures. On the basis of soot records it can be inferred that re-initiation occurs due to two different mechanisms that depend on the mixture sensitivity and properties of the multi-orifice plate.  相似文献   

11.
大型水平爆轰管中悬浮铝粉爆炸过程的实验研究   总被引:1,自引:0,他引:1  
铝粉的燃烧与爆轰性能是粉尘爆炸领域研究的热点.利用长29.6m,内径199mm,配有40套喷粉扬尘系统的水平爆轰管,在40J电火花点火条件下,实现了悬浮铝粉-空气混和物火焰加速、爆燃、爆轰及其转捩过程,测得了爆炸波传播过程中的压力信号,并且观察到了爆轰波的稳定传播现象.实验结果表明,当铝粉浓度为300 g/m3时,在距离点火端10.15m(长径比L/D=51)处发生了DDT,测得的爆轰波传播过程中管内的最大爆速为1840m/s,最大峰值超压为10.5MPa.铝粉尘爆炸波在爆轰管内的传播过程可分为爆燃段、爆燃转爆轰(DDT)、爆轰增强以及稳态爆轰四个阶段.  相似文献   

12.
在3种角度分叉管道内开展化学计量比氢气-空气爆轰实验,采用自制的火焰传感器和烟迹法分别获得了爆轰波传播速度和胞格结构,探究了不同角度管道分叉对爆轰传播的影响。结果表明:氢气-空气爆轰在经过分叉三通时受分叉口稀疏波影响导致爆轰波衰减解耦,但随着入射激波与下游管道壁面碰撞,逐渐由规则反射向马赫反射转变,最终完成重起爆过程。其中,直通支管内爆轰衰减主要受支管入口面积的影响,随着分叉角度增大,入口面积减小,爆轰衰减程度和重起爆距离也随之减小;而分叉支管内,爆轰衰减受支管入口面积与入口渐扩程度共同影响,但随着分叉角度的增大,入口面积变为主要影响因素。不同角度分叉管内的实验结果均表明,初始压力升高能显著提高爆轰稳定性,从而削弱分叉几何结构的影响。  相似文献   

13.
We experimentally investigated propagation characteristics of the shock wave driven by a gaseous detonation wave emerging from the open end of a cylindrical detonation tube. In the present study, we visualized the shock wave and exhaust flowfields using a shadowgraph optical system and we obtained peak overpressure in the tube axial direction and the continuous shape transformation of shock waves around the tube open end. We also obtained overpressure histories of the shock wave using piezo-pressure transducers within 201 m from the open end of the tube. We normalized and classified these results by four regions using non-dimensional pressure and distance which are independent of variety of mixture and tube diameter. In the vicinity of the open end of the tube, the shock wave is nearly planar and does not significantly attenuate, and the peak overpressure maintains approximately C–J pressure. Subsequently, the shock wave attenuates rapidly, transforming from quasi-spherical to spherical. Farther from the tube open end, the shock wave propagates with approximately sound characteristic so that the peak overpressure decreases proportional to 1/r. Eventually, the shock wave begins to attenuate more rapidly than ideal sound attenuation, which may be due to the viscous effect.  相似文献   

14.
In this study, the onset of detonation downstream of a perforated plate subsequent to the reflection of a Chapman–Jouguet detonation upstream is investigated. The experiments were performed with C3H8 + 5O2 and C2H2+2.5O2+70%Ar. The former has a much more irregular transverse wave pattern whereas the latter is known to have a piecewise laminar structure with a regular cellular structure. The onset of detonation phenomenon was found to be significantly different for the two mixtures. For the high argon diluted mixtures, the onset of detonation occurs in the vicinity downstream of the perforated plate. However, if the onset of detonation does not occur close to the plate, the precursor shock decouples from the reaction zone and a deflagration results. For the propane–oxygen mixtures, the onset of detonation is found to occur relatively far from the perforated plate at critical conditions. The major difference between these two mixtures is that the metastable turbulent reaction front can be maintained for relatively long distances for the propane–oxygen mixture. This turbulent metastable regime is also observed to be able to maintain a relatively constant propagation velocity for many channel widths prior to the onset of detonation. For the propane–oxygen mixtures, the onset is caused by a strong local explosion within the turbulent reaction zone.  相似文献   

15.
An experimental study was carried out to investigate flame acceleration and deflagration-to-detonation transition (DDT) in fuel–air mixtures at initial temperatures up to 573 K and pressures up to 2 atm. The fuels investigated include hydrogen, ethylene, acetylene and JP-10 aviation fuel. The experiments were performed in a 3.1-m long, 10-cm inner-diameter heated detonation tube equipped with equally spaced orifice plates. Ionization probes were used to measure the flame time-of-arrival from which the average flame velocity versus propagation distance could be obtained. The DDT composition limits and the distance required for the flame to transition to detonation were obtained from this flame velocity data. The correlation developed by Veser et al. (run-up distance to supersonic flames in obstacle-laden tubes. In the proceedings of the 4th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions, France (2002)) for the flame choking distance proved to work very well for correlating the detonation run-up distance measured in the present study. The only exception was for the hydrogen–air data at elevated initial temperatures which tended to fall outside the scatter of the hydrocarbon mixture data. The DDT limits obtained at room temperature were found to follow the classical d/λ = 1 correlation, where d is the orifice plate diameter and λ is the detonation cell size. Deviations found for the high-temperature data could be attributed to the one-dimensional ZND detonation structure model used to predict the detonation cell size for the DDT limit mixtures. This simple model was used in place of actual experimental data not currently available. PACS 47.40.-x; 47.70.Fw This paper was based on work that was presented at the 19th Interna-tional Colloquium on the Dynamics of Explosions and Reactive Sys-tems, Hakone, Japan, July 27 - August 1, 2003  相似文献   

16.
Large scale experiments (50 m3) have been carried out on the initiation of detonation by means of a jet of hot combustion products. The effects of hydrogen concentration (18–30% vol.), jet orifice diameter (100–400 mm), and the mixture composition in constant volume explosion chamber (25–50%) were investigated. Both high enough hydrogen concentration and large enough jet size are necessary for detonation initiation. The minimum values are within the ranges of 20 to 25% vol. H2, and of 100 to 200 mm correspondingly. A minimum ratio of jet size and mixture cell width 12–13 is required for detonation initiation.  相似文献   

17.
Observations are presented from calculations where a laminar spherical CH4/air flame was perturbed successively by incident and reflected shock waves reflected from a planar or concave wall. The two-dimensional axi-symmetric Navier–Stokes equations with detailed chemistry were used. The computational results were qualitatively validated with experiments which were performed in a standard shock tube arrangement. Under the influence of the incident shock wave, a Richtmyer–Meshkov instability is induced in the flame, and the distorted flame finally takes the form of two separated elliptical burning bubbles in the symmetric cross plane. Then, under subsequent interactions with the shock wave reflected from the planar or the concave wall, the flame takes a mushroom-like shape. Transverse waves produced by the shock reflection from the concave wall can compress the flame towards the axis, and the focusing shock generated on the concave wall will lead to a larger mushroom-like flame than that induced by the planar reflection.   相似文献   

18.
An experimental study of the influence of condensation of supersaturated carbon vapor formed behind reflected shock waves on the process of propagation of a shock wave and formation of a detonation wave of condensation is carried out. Highly supersaturated carbon vapor was formed from thermal decay of unstable carbon suboxide C3O2 → C + 2CO behind a shock wave in mixtures containing 10–30% C3O2 in Ar. This reaction was followed by fast growth of condensed carbon particles, accompanied by heat release. Experiments have shown a considerable temperature and pressure increase in the narrow zone behind the wave front, resulting in shock wave amplification and transition to a detonation-like regime. An analysis of the kinetics and heat release in the given conditions and calculations based upon one-dimensional detonation theory have shown that in a mixture of 10% C3O2 + Ar, insufficient heat release resulted in a regime of “overdriven detonation”. In a mixture of 20% C3O2 + Ar a very good coincidence of measured values of pressure and wave velocity with calculated Chapman–Jouguet parameters is observed. In a 30% C3O2 + Ar mixture, an excess heat release caused a slow down of the effective condensation rate and a regime of “underdriven detonation” is observed.  相似文献   

19.
Detonation diffraction through different geometries   总被引:1,自引:0,他引:1  
We performed the study of the diffraction of a self-sustained detonation from a cylindrical tube (of inner diameter d) through different geometric configurations in order to characterise the transmission processes and to quantify the transmission criteria to the reception chamber. For the diffraction from a tube to the open space the transmission criteria is expressed by d c  = k c ·λ (with λ the detonation cell size and k c depending on the mixture and on the operture configuration, classically 13 for alkane mixtures with oxygen). The studied geometries are: (a) a sharp increase of diameter (D/d > 1) with and without a central obstacle in the diffracting section, (b) a conical divergent with a central obstacle in the diffracting section and (c) an inversed intermediate one end closed tube insuring a double reflection before a final diffraction between the initiator tube and the reception chamber. The results for case A show that the reinitiation process depends on the ratio d/λ. For ratios below k c the re-ignition takes place at the receptor tube wall and at a fixed distance from the step, i.e. closely after the diffracted shock reflection shows a Mach stem configuration. For ratios below a limit ratio k lim (which depends on D/d) the re-ignition distance increases with the decrease of d/λ. For both case A and B the introduction of a central obstacle (of blockage ratio BR = 0.5) at the exit of the initiator tube decreases the critical transmission ratio k c by 50%. The results in configuration C show that the re-ignition process depends both on d/λ and the geometric conditions. Optimal configuration is found that provides the transmission through the two successive reflections (from d = 26 mm to D ch = 200 mm) at as small d/λ as 2.2 whatever the intermediate diameter D is. This configuration provides a significant improvement in the detonation transmission conditions.
This paper was based on work that was partly presented at the International Conference on Combustion and Detonation, Zel’dovich Memorial II, Moscow, Russia, 30 August–3 September 2004, and at the 20th International Colloquium on the Dynamics of Explosions and Reactive systems, Montreal, Canada, 31 July–5 August 2005.  相似文献   

20.
为了评估高温气冷核反应堆热交换器H2泄漏、爆炸的安全性,研究含内构件管道的H2/空气爆燃传播现象,建造了几何相似、尺寸相同的实验管道(真空筒)。分别充入不同初压和当量比H2/空气混合物,在真空筒顶部点火并引发爆燃,利用多通道瞬态压力测量和数据采集系统,记录各测点压力时间曲线。结果表明:对化学计量比H2/空气混合物,在慢化剂室和真空筒顶部空间产生爆燃,邻近测点的压力时间曲线显示了冲击波特征。该冲击波通过慢化剂室和真空筒侧壁的狭缝(2.5 mm),进入含内构件的扩张管道并形成爆燃。冲击波在真空筒端部反射、向后传播并与火焰相互作用,爆炸流场波系复杂。对富油和低初压化学计量比混合物,在慢化剂室和真空筒顶部空间产生燃烧,高温富油燃气的压力上升速率较慢。当燃气通过上述狭缝时,在真空筒突扩空间内再次点火并形成较强爆燃,压力时间曲线显示了冲击波特征及其在端面的反射。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号