首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Switching between P,S- and P,C coordination modes of 3'-phosphinoterthiophene to Ru(II) results in substantial differences in the electronic spectra and cyclic voltammetry of these complexes.  相似文献   

2.
Thiosemicarbazone derivatives are formed on reaction between acetophenone, salicylaldehyde, benzophenone and/or 2-hydroxy-4-methoxybenzophenone and thiosemicarbazide or its N4H substituents (ethyl-, phenyl-, and p-chlorophenyl-). The ligands were investigated by elemental analysis and spectral (IR, 1H?NMR and MS) studies. The formulas of the prepared complexes have been suggested by elemental analyses and confirmed by mass spectra. The coordination sites of each ligand were elucidated using IR spectra revealing bidentate and tridentate coordination. Different geometries for the complexes were proposed on the basis of electronic spectra and magnetic measurements. The complexes have been analyzed thermally (TG and DTG) and the kinetic parameters for some of their degradation steps were calculated.  相似文献   

3.
Emission and absorbance spectra, along with low-temperature excited-state lifetimes, were obtained for the hemilabile complexes, [Ru(bpy)2L](PF6)2 [L = (2-methoxyphenyl)diphenylphosphine (RuPOMe) (1) and (2-ethoxyphenyl)diphenylphosphine (RuPOEt) (2)] in solid 4:1 ethanol/methanol solution. Spectral data were evaluated with ground-state reduction potentials using Lever parameters. Lifetime data for these complexes were collected from 77 to 160 K, and the rate constant for the combined radiative and nonradiative decay process, k, the thermally activated process prefactor, k'(0), the rate constant for the MLCT --> d-d transition, k', and the activation energy, DeltaE', were calculated from a plot of ln(1/tau) versus 1/T for both (1) and (2). The low-temperature luminescence lifetimes of (1) were observed to decrease with increases in water concentration. The photophysical and kinetic data of (1) and (2) are compared to literature data for [Ru(bpy)3](PF6)2. The emission maxima of (1) and (2) are blue-shifted relative to [Ru(bpy)3](PF6)2 due to the presence of the strong-field phosphine ligand, which enhances pi back-bonding to the bipyridyl ligands. The thermal activation energy, DeltaE', is significantly larger for [Ru(bpy)3](PF6)2 than for (1) and (2) resulting in a faster MLCT --> d-d transition for (1) and (2). These results are discussed in the context of radiationless decay through thermally activated ligand-field states on the metal complex.  相似文献   

4.
Reaction of [Pd(dppe)Cl2/Br2] with AgOTf in a dichloromethane medium followed by ligand addition led to [Pd(dppe)(OSO2CF3)2] and then [Pd(dppe)(RaaiR)](OSO2CF3)2 [RaaiR′ = p-R-C6H4-N=N-C3H2-NN-1-R′, (1–3), abbreviated as a N,N′-chelator, where N(imidazole) and N(azo) are represented by N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), OSO2CF3 is the triflate anion, dppe = 1,2-bis-(diphenylphosphinoethane)]. 31P “1H” NMR confirmed that due to the two phosphorus atom interaction in the azoimine symmetrical environment one sharp peak was formed. The 1H NMR spectral measurements suggest that azo-imine link with lot of phenyl protons in the aromatic region. 13C (1H) NMR spectrum, 1H, 1H COSY and 1H, 13C HMQC spectrum assign the solution structure and stereo-retentive conformation in each complex.  相似文献   

5.
New mononuclear Ru(II) complexes [Ru(A)2(B)]2+, where A?=?2,2′-bipyridine/1,10-phenanthroline and B?=?3,4,5-tri-OCH3-DPC, 4-CH3-DPC, 4-N(CH3)2-DPC, 4-NO2-DPC, N-BITSZ, PTSZ and PINH, were prepared and characterized by spectroscopic methods. The in vitro cytotoxic activities of the complexes and their corresponding ligands were investigated against the human cancer T-lymphocyte cell lines molt 4/c8 and CEM and the murine tumor leukemia cell line L1210, human promyelocytic leukemia cells (HL-60) and Bel-7402 liver cancer cells by MTT assay. The complexes [Ru(A)2(B)]2+ (A?=?1,10-phenanthroline, B?=?3,4,5-tri-OCH3-DPC) exerts rather more potent activities against all of these cell lines, especially for CEM and L1210. Ru complexes and structure–activity relationships and anticancer mechanisms are also discussed.  相似文献   

6.
We have developed and optimized a well-controlled and refined methodology for the synthesis of substituted π-conjugated 4,4'-styryl-2,2'-bipyridine ligands and also adapted the tris(heteroleptic) synthetic approach developed by Mann and co-workers to produce two new representative Ru(II)-based complexes bearing the metal oxide surface-anchoring precursor 4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine. The two targeted Ru(II) complexes, (4,4'-dimethyl-2,2'-bipyridine)(4,4'-di-tert-butyl-2,2'-bipyridine)(4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine) ruthenium(II) hexafluorophosphate, [Ru(dmbpy)(dtbbpy)(p-COOMe-styryl-bpy)](PF(6))(2) (1) and (4,4'-dimethyl-2,2'-bipyridine)(4,4'-dinonyl-2,2'-bipyridine)(4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine) ruthenium(II) hexafluorophosphate, [Ru(dmbpy)(dnbpy)(p-COOMe-styryl-bpy)](PF(6))(2) (2) were obtained as analytically pure compounds in high overall yields (>50% after 5 steps) and were isolated without significant purification effort. In these tris(heteroleptic) molecules, NMR-based structural characterization became nontrivial as the coordinated ligand sets each sense profoundly distinct magnetic environments greatly complicating traditional 1D spectra. However, rational two-dimensional approaches based on both homo- and heteronuclear couplings were readily applied to these structures producing quite definitive analytical characterization and the associated methodology is described in detail. Preliminary photoluminescence and photochemical characterization of 1 and 2 strongly suggests that both molecules are energetically and kinetically suitable to serve as sensitizers in energy-relevant applications.  相似文献   

7.
A detailed spectroscopic and electrochemical study of a series of novel phenolate bound complexes, of general formulas [M(L-L)(2)(box)](PF(6)), where M is Os and Ru, L-L is 2,2-bipyridine or 2,2-biquinoline, and box is 2-(2-hydroxyphenyl)benzoxazole, is presented. The objectives of this study were to probe the origin of the LUMOs and HOMOs in these complexes, to elucidate the impact of metal and counter ligand on the electronic properties of the complex, and to identify the extent of orbital mixing in comparison with considerably more frequently studied quinoid complexes. [M(L-L)(2)(box)](PF(6)) complexes exhibit a rich electronic spectroscopy extending into the near infrared region and good photostability, making them potentially useful as solar sensitizers. Electrochemistry and spectroscopy indicate that the first oxidation is metal based and is associated with the M(II)/(III) redox states. A second oxidative wave, which is irreversible at slow scan rates, is associated with the phenolate ligand. The stabilities of the oxidized complexes are assessed using dynamic electrochemistry and discussed from the perspective of metal and counter ligand (LL) identity and follow the order of increasing stability [Ru(biq)(2)(box)](+) < [Ru(bpy)(2)(box)](+) < [Os(bpy)(2)(box)](+). Electronic and resonance Raman spectroscopy indicate that the lowest energy optical transition for the ruthenium complexes is a phenolate (pi) to L-L (pi) interligand charge-transfer transition (ILCT) suggesting the HOMO is phenolate based whereas electrochemical data suggest that the HOMO is metal based. This unusual lack of correlation between redox and spectroscopically assigned orbitals is discussed in terms of metal-ligand orbital mixing which appears to be most significant in the biquinoline based complex.  相似文献   

8.
Cadmium(II) complexes of thiones and thiocyanate, [(>C=S)2Cd(SCN)2], have been prepared and characterized by IR and NMR spectroscopy. An upfield shift in the >C=S resonance of thiones in the 13C NMR and downfield shift in N–H resonance in 1H NMR are consistent with sulfur coordination to cadmium(II). The presence of ν(N–H) of thiones in IR spectra of the complexes indicates the thione forms of the ligands in the solid state; some contribution of the thiolate form was observed in one complex. The appearance of a band around 2100 cm?1 in IR and a resonance around 132 ppm in 13C NMR indicates the binding of thiocyanate to cadmium(II).  相似文献   

9.
Methionine sulfoxide complexes of iron(II) and copper(II) were synthesized and characterized by chemical and spectroscopic techniques. Elemental and atomic absorption analyses fit the compositions K2[Fe(metSO)2]SO4·H2O and [Cu(metSO)2]·H2O. Electronic absorption spectra of the complexes are typical of octahedral geometries. Infrared spectroscopy suggests coordination of the ligand to the metal through the carboxylate and sulfoxide groups. An EPR spectrum of the Cu(II) complex indicates tetragonal distortion of its octahedral symmetry. 57Fe Mössbauer parameters are also consistent with octahedral stereochemistry for the iron(II) complex. The complexes are very soluble in water.  相似文献   

10.
A series of four polypyridyl Ru(II) complexes such as [Ru(L)4(PIP)]2+ and [Ru(L)4PPIP]2+ where L is 4-amino pyridine and Pyridine (PIP?=?2-phenylimidazo[4,5-f] [1, 10] phenanthroline), (PPIP?=?2-(4??-phenoxy-phenyl) imidazo[4,5-][1, 10]phenanthroline) have been synthesized and characterized by elemental analysis, physicochemical methods such as UV?Cvis, IR and NMR spectroscopic techniques. The DNA-binding behavior of these complexes was investigated by electronic absorption titrations, fluorescence spectroscopy, viscosity measurements and salt-dependent studies. The experimental results indicate that all these complexes can bind to DNA through an intercalation mode, the DNA-binding affinities of these complexes follow the order [Ru(4-APy)4(PPIP)]2+(1)?>?[Ru(Py)4PPIP]2+(2)?>?[Ru(4-APy)4(PIP)]2+(3)?>?[Ru(Py)4PIP]2+(4). Noticeably, these complexes have been found to be efficient photosensitisers for strand scissions in plasmid DNA. Further, all four complexes screened for their antimicrobial activity indicate that the complexes show appreciable activity against Escherichia coli and Neurospora Crassa. In addition, in the presence of Co2+, the emission of DNA-[Ru(L4)PPIP/PIP]2+ can be quenched and recovered by the addition of EDTA, which exhibited the DNA ??light switch?? properties.  相似文献   

11.
A new series of ruthenium(II) N-heterocyclic carbene complexes [RuL1,2,3(p-cymene)Cl2] (3a–c) (where L is a N-heterocyclic carbene), have been synthesized via transmetalation. The new ruthenium(II)-NHC complexes were applied to transfer hydrogenation of acetophenone derivatives and aldehydes using 2-propanol as a hydrogen source and KOH as a co-catalyst. The results show that the corresponding alcohols could be obtained in good yield with high catalyst activity (up to 100%) under mild conditions. [RuL1(p-cymene)Cl2] (3a) is much more active than the other complexes in transfer hydrogenation. Reactions, catalyzed by 3a–c, showed the highest reaction rates and yields of alcohol when the substrates bear more electron-withdrawing substituents. All new compounds were characterized by IR, elemental analysis, LC–MS (ESI), and NMR spectroscopy.  相似文献   

12.
Ciprofloxacin metal co mplexes with general for mula [M(CPF)2]X2·nH2O [M = Zn(II), Cd(II), and Hg(II)] have been synthesised and characterized using elemental analysis (CHN), spectroscopic (UV-Vis, IR, MS, and 1H NMR) and ther mogravimetric (TG and DTA) data. Using the Coats-Redfern and Horowitz-Metzeger methods, kinetic analysis of the thermogravimetric data had been performed.  相似文献   

13.
Reaction of [Ni(dppe)Cl2/Br2] with AgOTf in CH2Cl2 medium following ligand addition leads to [Ni(dppe)(OSO2CF3)2] and then [Ni(dppe)(RaaiR)](OSO2CF3)2 [RaaiR′ = p–R–C6H4–N=N–C3H2–NN-1–R′,(1–3), abbreviated as N,N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), OSO2CF3 is the triflate anion]. 31P{1H}-NMR confirm that stable bis-chelated square planar Ni(II) azoimine–dppe complex formation with one sharp peaks. The 1H NMR spectral measurements suggest azoimine link is present with lot of phenyl protons in the aromatic region. Considering all the moities there are a lot of different carbon atoms in the molecule which gives many different peaks in the 13C(1H)-NMR spectrum. In the 1H-1H COSY spectrum in the present complexes and contour peaks in the 1H-13C-HMQC spectrum in the present complexes, assign the solution structure and stereoretentive conformation in each complexes.  相似文献   

14.
The synthesis and characterization of four new solid complexes, Cu(tolf)2L2 (tolf = tolfenamate, L = 2-pyridylmethanol (2-pyme), 3-pyridylmethanol (3-pyme), nicotinamide (na)) and Cu(tolf)2(dena)2(H2O)2 (dena = N,N-diethylnicotinamide) is reported. The composition and stereochemistry as well as the mode for ligand coordination have been determined by elemental analysis, IR, electronic and EPR spectra. The carboxyl group of the tolfenamate anion coordinates to the Cu(II) atom as an unidentate or as a chelating ligand. The EPR spectra of the powdered solids are consistent with spin S = ½. The crystal structure of Cu(tolf)2(dena)2(H2O)2 has been determined at 293 K. The Cu(II) atom has a tetragonal–bipyramidal arrangement (CuO4N2). The spectroscopic data indicate that each copper(II) atom in Cu(tolf)2L2 has a tetragonal–bipyramidal environment built up by bidentate unsymmetrically coordinate tolfenamates and unidentate N-donor atom ligands.  相似文献   

15.
Ruthenium(II) complexes of the type, RuCl2(NO)(PPh3)(L2) (where L = amide ligand) have been synthesized and characterized on the basis of their elemental analysis IR, 1H-, 13C-, 31P-NMR spectra. Amide ligand behaved as a bidentate ligand. The probable structures of these complexes have been discussed. They were used as catalysts for the hydrolysis of drugs viz. rivastigmine tartrate and neostigmine bromide. The percent yields of hydrolyzed products of these drugs were determined spectrophotometrically.  相似文献   

16.
In the search for antitumor active metal complexes several ruthenium complexes have been reported to be promising. A series of mononuclear Ru(II) complexes, [Ru(T)2(S)]2+, where T?=?2,2′-bipyridine/1,10-phenanthroline and S?=?CH3-bitsz, Cl-bitsz, Br-bitsz, tmtsz, dmtsz, have been prepared and characterized by UV-Vis, IR, 1H-NMR, FAB-mass spectroscopy, and elemental analysis. The complexes were subjected to in vivo anticancer activity against a transplantable murine tumor cell line Ehrlich's ascitic carcinoma (EAC) and in vitro cytotoxic activity against human cancer cell line Molt 4/C8, CEM, and murine tumor cell line L1210. Ruthenium complexes showed promising biological activity especially in decreasing tumor volume and viable ascitic cell counts. Treatment with these complexes prolonged the life span of EAC-tumor-bearing mice by 10–48%. In vitro evaluation of these ruthenium complexes revealed cytotoxic activity from 0.21 to 24?µmol?L?1 against Molt 4/C8, 0.16–19?µmol?L?1 against CEM, and 0.75–32?µmol?L?1 against L1210 cell proliferation, depending on the nature of the compound.  相似文献   

17.
Summary Complexes of Cu(glygly)phen ygly = glycylglycine; phen = 4,7-dimethyl [(1)], 5,6-dimethyl [(2)], 5-NO2[(3)], 5-Cl[(4)], 2-oxazolinyl (2-ox) [(5)] Phenanthroline and bis(2-oxazolinylphenanthroline)-copper(II) [(6)] were synthesized and characterized by conductivity measurements, e.p.r., i.r. and reflectance electronic spectroscopies.A broad u.v.-vis. band in the 620–640 nm range and a shoulder at ca. 825 nm suggest that these complexes are five-coordinate. The e.p.r. spectra indicate a stronger equatorial ligand field in the ternary complexes which is absent in the binary Cu-phen complexes, suggesting square pyramidal coordination, whose base contains the three donor atoms from glygly (O, N, N) and one donor from the phenanthroline nitrogen atom. The other nitrogen-containing ligand of the phenanthroline is in an apical position.The spectroscopic results can be correlated with electronic and steric effects attributable to the different substituents on the phenanthroline ligands.Only small variations in the structure of the ternary complexes occur as a function of the electronic effects of substituents on the aromatic phenanthroline ring ligands. Steric hindrance predominates in determining coordination geometry around copper(II).  相似文献   

18.
Synthesis of stable copper(II) complexes with reduced dextran derivatives can be realized with low molar polysaccharides of an average molar mass 5000 g mol−1. A copper(II) content of 4–20% is achieved at pH 7–8 and at the boiling point. Copper(II) complex formation with dextran was analyzed by spectrophotometric VIS methods. The IR spectra of copper(II) complexes with dextran were analyzed to find the most stable conformation of the glucopyranose unit. The ESR parameters of the spectrum indicate a square-planar coordination of the Cu(II) ion with four oxygen ligand atoms in the same plane. Copper deficiency causes a number of pathological states [1]. In both human and veterinary medicine, commercial copper preparations based on dextran and its derivatives are used for such purposes [2]. According to the literature data, dextran has the ability of complex formation with various biometals (Zn, Fe, Co, Ca, and Mg) [3–6]. Iron complexes with different polysaccharides have special importance and they have been described in detail [7]. Synthetic procedures for the complex formation of Cu(II) with polysaccharides, including dextran, are described in scientific and patent literature [8]. However, literature data on the complex formation possibility of the Cu(II) ion with dextran derivatives are scarce. The text was submitted by the authors in English. An erratum to this article is available at .  相似文献   

19.
rac-Bis[{(diphenylphosphino)ethyl}-phenylphosphino]methane (DPPEPM) reacts with iron(II) and ruthenium(II) halides to generate complexes with folded DPPEPM coordination. The paramagnetic, five-coordinate Fe(DPPEPM)Cl(2) (1) in CD(2)Cl(2) features a tridentate binding mode as established by (31)P{(1)H} NMR spectroscopy. Crystal structure analysis of the analogous bromo complex, Fe(DPPEPM)Br(2) (2) revealed a pseudo-octahedral, cis-α geometry at iron with DPPEPM coordinated in a tetradentate fashion. However, in CD(2)Cl(2) solution, the coordination of DPPEPM in 2 is similar to that of 1 in that one of the external phosphorus atoms is dissociated resulting in a mixture of three tridentate complexes. The chloro ruthenium complex cis-Ru(κ(4)-DPPEPM)Cl(2) (3) is obtained from rac-DPPEPM and either [RuCl(2)(COD)](2) [COD = 1,5-cyclooctadiene] or RuCl(2)(PPh(3))(4). The structure of 3 in both the solid state and in CD(2)Cl(2) solution features a folded κ(4)-DPPEPM. This binding mode was also observed in cis-[Fe(κ(4)-DPPEPM)(CH(3)CN)(2)](CF(3)SO(3))(2) (4). Addition of an excess of CO to a methanolic solution of 1 results in the replacement of one of the chloride ions by CO to yield cis-[Fe(κ(4)-DPPEPM)Cl(CO)](Cl) (5). The same reaction in CH(2)Cl(2) produces a mixture of 5 and [Fe(κ(3)-DPPEPM)Cl(2)(CO)] (6) in which one of the internal phosphines has been substituted by CO. Complexes 2, 3, 4, and 5 appear to be the first structurally characterized monometallic complexes of κ(4)-DPPEPM.  相似文献   

20.
The semiempirical zero-differential-overlap molecular orbital model which was shown in earlier papers in this series to give a good account of the charge transfer and -* spectra of Fe(II) complexes with conjugated ligands such as 2,2-bipyridyl and 1,10-phenanthroline is extended to complexes having openshell ground states, such as those of Fe(III), and to complexes of Ru(II) and Ru(III). The results are used to assign the observed charge transfer and intra-ligand absorption bands to specific orbital transitions. Observed and calculated intensities are in good agreement: reasons are advanced for the much lower intensity of the charge transfer bands in Ru(III) compared to Ru(II) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号