首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, hexavalent chromium (Cr(VI)) reduction potential of chromium reductase associated with the cell-free extracts (CFE) of Arthrobacter rhombi-RE species was evaluated. Arthrobacter rhombi-RE, an efficient Cr(VI) reducing bacterium, was enriched and isolated from a chromium-contaminated site. Chromium reductase activity of Arthrobacter rhombi-RE strain was associated with the cell-free extract and the contribution of extracellular enzymes to Cr(VI) reduction was negligible. NADH enhanced the chromium reductase activity. The enzyme activity was optimal at a pH of 5.5 and a temperature of 30 °C. Among the ten electron donors screened, sodium pyruvate was the most effective one followed by NADH and propionic acid. Michaelis–Menten constant, K m, and maximum reaction rate, V max, obtained from the Lineweaver–Burk plot were 48 μM and 4.09 nM/mg protein/min, respectively, in presence of NADH as electron donor and 170.5 μM and 4.29 nM/mg protein/min, respectively, in presence of sodium pyruvate as electron donor. Ca2+ enhanced the enzyme activity while Hg2+, Cd2+, Ba2+, and Zn2+ inhibited the enzyme activity. Among the various immobilization matrices screened, calcium alginate beads seemed to be the most effective one. Though immobilized enzyme system was able to reduce Cr(VI), the performance was not very encouraging in continuous mode of operation.  相似文献   

2.
Effect of organic compounds (salicylic, acetylsalicylic, and p-nitrobenzoic acids) adsorbed on a nickel surface or introduced into solution on the cathodic reduction of Cr(VI) is studied by measuring voltammetric curves in a wide potential range up to the beginning of electrodeposition of black chromium. If the adsorbate is salicylic or p-nitrobenzoic acid, only the maximum current corresponding to incomplete reduction Cr(VI) Cr(III) increases in cathodic polarization curve (PC). On a surface modified by acetylsalicylic acid, in addition to an increase in the maximum current, all parts of PC shift towards positive potentials. The Cr(VI) reduction on modified surfaces accelerates presumably due to the electron transfer from the cathode surface onto Cr(VI) atoms, accelerated by the formation of bridges with an increased electron conduction.  相似文献   

3.
Three bacterial isolates, GT2, GT3, and GT7, were isolated from the sludge and water of a circulating cooling system of iron and steel plant by screening on Cr(VI)-containing plates. Three isolates were characterized as the members of the genus Pseudomonas on the basis of phenotypic characteristics and 16S rRNA sequence analysis. All isolates were capable of resisting multiple antibiotics and heavy metals. GT7 was most resistant to Cr(VI), with a minimum inhibitory concentration (MIC) of 6.5 mmol L?1. GT7 displayed varied rates of Cr(VI) reduction in M2 broth, which was dependent on pH, initial Cr(VI) concentration, and inoculating dose. Total chromium analysis revealed that GT7 could remove a part of chromium from the media, and the maximum rate of chromium removal was up to 40.8 %. The Cr(VI) reductase activity of GT7 was mainly associated with the soluble fraction of cell-free extracts and reached optimum at pH 6.0~8.0. The reductase activity was apparently enhanced by external electron donors and Cu(II), whereas it was seriously inhibited by Hg(II), Cd(II), and Zn(II). The reductase showed a K m of 74 μmol L?1 of Cr(VI) and a V max of 0.86 μmol of Cr(VI) min?1 mg?1 of protein. The results suggested that GT7 could be a promising candidate for in situ bioremediation of Cr(VI).  相似文献   

4.
Reduction of chromium (VI), Cr(VI) in aqueous neutral or basic solution was promoted by γ-ray irradiation in the presence of oxide particles such as TiO2, Al2O3 or SiO2. The oxide particles behaved as a catalyst, and the efficiency of the Cr(VI) reduction increased with an increase of the irradiation dose irrespective of the initial Cr(VI) concentration. The insoluble Cr(III) oxide formed through the Cr(VI) reduction also acted as the catalyst.  相似文献   

5.
The potential use of biomass of Aeromonas hydrophila for biosorption of chromium from aqueous solution was investigated. The variables (pH, initial Cr(VI) concentration, biomass dose, and temperature) affecting process were optimized by performing minimum number of experimental runs with the help of central composite design. The results predicted by design were found to be in good agreement (R 2 = 99.1%) with those obtained by performing experiments. Multiple regression analysis shows that uptake decreases with increase in pH and biomass dose, whereas it increases with increase in temperature and concentration. The maximum removal of Cr(VI) predicted by contour and optimization plots was 184.943 mg/g at pH 1.5, initial Cr(VI) concentration 311.97 mg/L, temperature 60 °C, and biomass dose 1.0 g. The removal of Cr(VI) was governed by adsorption of Cr(VI) as well as its reduction into Cr(III), which further gets adsorbed. The sorption capacity of biomass was calculated from experimental data using Langmuir sorption model and was found to be 151.50 mg/g at 40 °C and pH 1.5, which is comparable to other biosorbents. In addition to this, Dubinin–Radushkevich model was applied, and it was found that nature of sorption was chemisorption.  相似文献   

6.
A simple, inexpensive method based on solid-phase extraction (SPE) on sawdust from Cedrus deodera has been developed for speciation of Cr(III) and Cr(VI) in environmental water samples. Because different exchange capacities were observed for the two forms of chromium at different pH—Cr(III) was selectively retained at pH 3 to 4 whereas Cr(VI) was retained at pH 1—complete separation of the two forms of chromium is possible. Retained species were eluted with 2.5 mL 0.1 mol L−1 HCl and 0.1 mol L−1 NaOH. Detection limits of 0.05 and 0.04 μg mL−1 were achieved for Cr(III) and Cr(VI), respectively, with enrichment factors of 100 and 80. Recovery was quantitative using 250 mL sample volume for Cr(III) and 200 mL for Cr(VI). Different kinetic and thermodynamic properties that affect sorption of the chromium species on the sawdust were also determined. Metal ion concentration was measured as the Cr(VI)–diphenylcarbazide complex by UV–visible spectroscopy. The method was successfully applied for speciation of chromium in environmental and industrial water samples.  相似文献   

7.
Hexavalent chromium, a major contaminant in most wastewater sites, is a potential health threat inducing cancer to humans while trivalent chromium is an essential element for the metabolism of sugar. The radiation-induced reduction of Cr(VI) metal ion to Cr(III) by the perhydroxyl radical (HO2 ?) and carboxyl radical anion (CO2 ??) produced by continuous radiolysis of water was investigated by steady state radiolysis of O2, Ar and N2O-saturated pH 3 solutions in the presence of formate. In all cases the removed Cr(VI) was a linear function of the absorbed dose. The added formate was favorable for removing Cr(VI). Its presence protects the solution from reverse radiolytic oxidation of Cr(III) to Cr(VI). The measured and calculated yield of removal of Cr(VI) do agree quite well at low formate concentration but at high formate concentration the measured yield was higher than the expected. When all formate is exhausted no recovery of Cr(VI) from Cr(III) was observed in case of O2- and Ar-saturated solutions whilst in the case of N2O-saturated solutions Cr(VI) recovers. The results obtained in this study highlight the potential of this technology for industrial wastewater treatment.  相似文献   

8.
A sensitive and simple method for determination of chromium species after separation and preconcentration by solid phase extraction (SPE) has been developed. For the determination of the total concentration of chromium in solution, Cr(VI) was efficiently reduced to Cr(III) by addition of hydroxylamine and Cr(III) was preconcentrated on a column of immobilised ferron on alumina. The adsorbed analyte was then eluted with 5?mL of hydrochloric acid and was determined by flame atomic absorption spectrometery. The speciation of chromium was affected by first passing the solution through an acidic alumina column which retained Cr(VI) and then Cr(III) was preconcentrated by immobilised ferron column and determined by FAAS. The concentration of Cr(VI) was determined from the difference of concentration of total chromium and Cr(III). The effect of pH, concentration of eluent, flow rate of sample and eluent solution, and foreign ions on the sorption of chromium (III) by immobilised ferron column was investigated. Under the optimised conditions the calibration curve was linear over the range of 2–400?µg?L?1 for 1000?mL preconcentration volume. The detection limit was 0.32?µg?L?1, the preconcentration factor was 400, and the relative standard deviation (%RSD) was 1.9% (at 10?µg?L?1; n?=?7). The method was successfully applied to the determination of chromium species in water samples and total chromium in standard alloys.  相似文献   

9.
Speciation of Cr(III) and Cr(VI) can be attained by flow injection analysis with amperometric detection. Cr(VI) is reduced in an acidic medium to Cr(III) with a glassy carbon electrode at —0.1 V vs. Ag/AgCl and the current is recorded. Cr(III) is oxidised on-line to Cr(VI) with alkaline hydrogen peroxide solution. From the difference of the total chromium and Cr(VI), the amount of Cr(III) was obtained. A linear calibration curve for Cr(VI) was obtained for the concentration ranges 0.01-5.0ppm of Cr(VI) and we have calculated the limit of determination to be about 0.5ppb. We have studied the degree of reproducibility obtained using the solid electrodes under various conditions. The influence of flow rate, coil length, interfenences and the extent of reaction were studied.  相似文献   

10.
水溶液中六价铬在碳纳米管上的吸附   总被引:6,自引:0,他引:6  
裘凯栋  黎维彬 《物理化学学报》2006,22(12):1542-1546
针对用碳纳米管对水溶液中六价铬的吸附净化进行了研究, 考察了溶液浓度、溶液pH值、共存的三价铬离子等因素对吸附行为的影响. 实验结果表明, 碳纳米管在室温下对于六价铬的吸附量随着平衡浓度的增大而升高, 在铬浓度为493.557 mg•L−1时碳纳米管吸附量达到最大值为532.215 mg•g−1; 六价铬的浓度在300~700 mg•L−1的范围内, 碳纳米管对铬的吸附量变化不大;大于700 mg•L−1时, 随着铬的平衡浓度的升高碳纳米管对铬的吸附量降低, 铬浓度为961.074 mg•L−1时, 碳纳米管吸附量降至194.631 mg•g−1. 在pH值为2~7的范围内, 碳纳米管对六价铬的吸附量随着溶液pH值的减小而增大; 而在碱性条件下, pH值对碳纳米管吸附六价铬的影响不大. 溶液中存在三价铬时, 碳纳米管对六价铬的吸附量明显降低, 表明三价铬与六价铬有竞争吸附. 此外, 活性炭的对比吸附实验表明, 在低浓度时, 譬如在六价铬浓度为190 mg•L−1吸附时, 碳纳米管对铬的吸附量约为活性炭的6倍;而在高浓度下, 譬如六价铬浓度为493 mg•L−1时, 碳纳米管对铬的吸附量约为活性炭的2倍.  相似文献   

11.
Hexavalent chromate reductase was characterized and was found to be localized in the cytoplasmic fraction of a chromium-resistant bacterium Pannonibacter phragmitetus LSSE-09. The Cr(VI) reductase activity of cell-free extract (S12) was significantly improved by external electron donors, such as NADH, glucose, acetate, formate, citrate, pyruvate, and lactate. The reductase activity was optimal at pH 7.0 with NADH as the electron donor. The aerobic and anaerobic Cr(VI)-reduction enhanced by 0.1 mM NADH were respectively 3.5 and 3.4 times as high as that without adding NADH. The Cr(VI) reductase activity was inhibited by Mn2+, Cd2+, Fe3+, and Hg2+, whereas Cu2+ enhanced the chromate reductase activity by 29% aerobically and 33% anaerobically. The aerobic and anaerobic specific Michaelis–Menten constant K m of S12 fraction was estimated to be 64.95 and 47.65 μmol L−1, respectively. The soluble S150 fractions showed similar activity to S12 and could reduce 39.7% and 53.4% of Cr(VI) after 1 h of incubation aerobically and anaerobically while the periplasmic contents showed no obvious reduction activity, suggesting an effective enzymatic mechanism of Cr(VI) reduction in the cytoplasmic fractions of the bacterium. Results suggest that the enzymatic reduction of Cr(VI) could be useful for Cr(VI) detoxification in wastewater.  相似文献   

12.
Synthetic dyes are released into the environment from textile industrial effluents. The discharge of this colored wastewater into rivers and lakes leads to a reduction in sunlight penetration in natural water bodies, which, in turn, decreases both photosynthetic activity and dissolved oxygen concentration and is toxic to living beings. Bacterial isolates are optimized for growth and biomass production before using them for decolorizing dye effluent. The bacterial isolates Bacillus sp. 1 and Bacillus sp. 2 were employed at different percentages by volume with standard nutrient concentration. Of these bacterial isolates Bacillus sp. 2 recorded maximum color reduction. The pH and electrical conductivity (EC) were reduced in the decolorized effluent, and a reduction in biologic oxygen demand, chemical oxygen demand, total suspended solids, and total dissolved solids (TDS) were also observed.  相似文献   

13.
The present study is performed to examine the accumulation efficiency of 51Cr(III) and 51Cr(VI) by the alkaloid piperine, derived from the fruits of Piper nigrum (Family Piperaceae) as well as using the fruit commonly known as black pepper by radiometric technique. The pH dependence and the effect of the concentration of chromium on the accumulation have also been examined. The maximum accumulation (52%) of Cr(III) is found by black pepper at pH 4 whereas piperine shows slight accumulation at this condition. Accumulation of Cr(VI) by black pepper is always negligible. It has also been observed that some other constituents of the black pepper like gum, terpenoid, etc., besides piperine is responsible for the accumulation of chromium.  相似文献   

14.
A new solid phase extraction (SPE) method has been developed for the speciation of Cr(III) and Cr(VI). This method is based on the adsorption of Cr(VI) on modified alumina‐coated magnetite nanoparticles (ACMNPs). Total chromium in different samples was determined as Cr(VI) after oxidation of Cr(III) to Cr(VI) using H2O2. The chromium concentration has been determined by flame atomic absorption spectrometric (FAAS) technique and amount of Cr(III) was calculated by substracting the concentration of Cr(VI) from total chromium concentration. The effect of parameters such as pH, amount of adsorbent, contact time, sample volume, eluent type, H2O2 concentration and cetyltrimethylammonium bromide (CTAB) concentration as modifier on the quantitative recovery of Cr(VI) were investigated. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range and relative standard deviation (RSD) of Cr(VI) were 140 (for 350 mL of sample solution), 0.083 ng mL?1, 0.1‐10.0 ng mL?1 and 4.6% (for 5.0 ng mL?1, n = 7), respectively. This method avoided the time‐consuming column‐passing process of loading large volume samples in traditional SPE through the rapid isolation of CTAB@ACMNPs with an adscititious magnet. The proposed method was successfully applied to the determination and speciation of chromium in different water and wastewater samples and suitable recoveries were obtained.  相似文献   

15.
The hydrogen chromate anion (HCrO4 ), which is the predominant species in acidic solutions and solutions with low chromium concentration, was determined by capillary zone electrophoresis (CZE) using UV detection on-column at 200 nm. A fused-silica capillary (55 cm × 50 μm i.d.) was employed with a high negative voltage of 20 kV. Total chromium was determined after reduction by H2O2 and its complexation by EDTA. The use of H2O2 as reducing agent is advantageous, as it does not increase the conductivity of the solution. Detection limits achieved (for 200 s injection time) were 30 and 8 μg/L for Cr(VI) and Cr(III), respectively. The CZE results obtained for Cr(III) and Cr(VI) were compared with those obtained by ion exchange with subsequent AAS.  相似文献   

16.
A simple, sensitive and reliable method has been developed for separation and preconcentration of chromium (VI) from aqueous samples before determination by electrothermal atomic absorption spectrometry. The method is based on the extraction of the hydrophobic complex of chromium (VI) with ammonium pyrrolidine dithiocarbamate in the coacervates made up of decanoic acid reverse micelles in the water–tetrahydrofuran mixture. Parameters affecting the extraction efficiency of the analyte were studied and optimised. Under the optimum conditions, the linear range, enhancement factor, the limit of detection and limit of quantification were found to be 0.008–0.4 µg L?1, 127, and 1.8 ng L?1 and 6.0 ng L?1, of Cr(VI), respectively. The relative standard deviation at the concentration level of 0.1 µg L?1 Cr(VI) (n = 6) was 4.2%. Total chromium was determined after the oxidation of Cr(III) to Cr(VI) with permanganate in acidic medium. The method was successfully applied to the determination of chromium species in water and human serum samples.  相似文献   

17.
Ma HL  Tanner PA 《Talanta》2008,77(1):189-194
An isotope dilution method has been developed for the speciation analysis of chromium in natural waters which accounts for species interconversions without the requirement of a separation instrument connected to the mass spectrometer. The method involves (i) in-situ spiking of the sample with isotopically enriched chromium species; (ii) separation of chromium species by precipitation with iron hydroxide; (iii) careful measurement of isotope ratios using an inductively coupled plasma mass spectrometer (ICP-MS) with a dynamic reaction cell (DRC) to remove isobaric polyatomic interferences. The method detection limits are 0.4 μg L−1 for Cr(III) and 0.04 μg L−1 for Cr(VI). The method is demonstrated for the speciation of Cr(III) and Cr(VI) in local nullah and synthetically spiked water samples. The percentage of conversion from Cr(III) to Cr(VI) increased from 5.9% to 9.3% with increase of the concentration of Cr(VI) and Cr(III) from 1 to 100 μg L−1, while the reverse conversion from Cr(VI) to Cr(III) was observed within a range between 0.9% and 1.9%. The equilibrium constant for the conversion was found to be independent of the initial concentrations of Cr(III) and Cr(VI) and in the range of 1.0 (at pH 3) to 1.8 (at pH 10). The precision of the method is better than that of the DPC method for Cr(VI) analysis, with the added bonuses of freedom from interferences and simultaneous Cr(III) determination.  相似文献   

18.
A European directive was recently adopted limiting the use of hazardous substances such as Pb, Hg, Cd, and Cr(VI) in vehicle manufacturing. From July 2003 a maximum of 2 g Cr(VI) will be authorised per vehicle in corrosion-preventing coatings of key components. As no standardised procedures are available to check if produced vehicles are in agreement with this directive, the objective of this work was to develop analytical procedures for total chromium and Cr(VI) determination in these materials. The first step of this study was to optimise digestion procedures for total chromium determination in plastic and metallic materials by inductively coupled plasma mass spectrometry (ICP–MS). High resolution (HR) ICP–MS was used to examine the influence of polyatomic interferences on the detection of the 52Cr+ and 53Cr+ isotopes. If there was strong interference with m/z 52 for plastic materials, it was possible to use quadrupole ICP–MS for m/z 53 if digestions were performed with HNO3+H2O2. This mixture was also necessary for digestion of chromium from metallic materials. Extraction procedures in alkaline medium (NH4+/NH3 buffer solution at pH 8.9) assisted by sonication were developed for determining Cr(VI) in four different corrosion-preventing coatings by HPLC–ICP–MS. After optimisation and validation with the only solid reference material certified for its Cr(VI) content (BCR 545; welding dusts), the efficiency of this extraction procedure for screw coatings was compared with that described in the EN ISO 3613 standard generally used in routine laboratories. For coatings comprising zinc and aluminium passivated in depth with chromium oxides the extraction procedure developed herein enabled determination of higher Cr(VI) concentrations. This was also observed for the screw covered with a chromium passivant layer on zinc–nickel. For coating comprising a chromium passivant layer on alkaline zinc the standardized extraction procedure was more efficient. In the case of painted metallic plate, because of a reactive matrix towards Cr(VI), its extraction without degradation was difficult to perform.  相似文献   

19.
An adsorptive stripping voltammetric method for speciation analysis of chromium in natural water samples has been developed. Ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) were used as complexing agents for Cr(III) present in the sample and formed as products of Cr(VI) reduction, respectively. Under optimum experimental conditions linear relations in the range from 1×10?6 to 3×10?5 mol L?1 without accumulation and from 1×10?9 to 1×10?7 at 30 s accumulation time were obtained for Cr(III) and Cr(VI), respectively. For samples in which Cr(III) concentration is higher than 1×10?6 mol L?1 the Cr(III) and Cr(VI) were determined simultaneously in one voltammetric cell. For samples in which Cr(III) concentration is below 1×10?6 mol L?1 only Cr(VI) was selectively determined in the presence of Cr(III), which did not influence the Cr(VI) signal. The determination of Cr(III) and Cr(VI) was successful with the application of the proposed procedure in the presence of common foreign ions. The presented method was applied for the speciation of chromium in spiked tap and river water samples with satisfactory results.  相似文献   

20.
The voltammetric method of Cr(VI) determination in a flow system is proposed. Determinations can be carried out in the simultaneous presence of an excess of Cr(III), complexing agents, humic substances and surfactants. The method is based on the combination of a selective accumulation of the product of Cr(VI) reduction to the metallic state and a very sensitive voltammetric method of chromium determination in the presence of DTPA and nitrates. The calibration graph is linear from 1×10?9 to 5×10?8 mol L?1 for accumulation time of 30 s. The relative standard deviation is 5.2% (n=5) for Cr(VI) concentration 1×10?8 mol L?1. The influence of humic and fulvic acids, complexing agents and surfactants on Cr(VI) and the interfering Cr(III) signal is presented. The method was applied to Cr(VI) determination in certified reference material, soil sample, natural water sample and EDTA extracts from soil certified reference material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号