首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
By designing and fabricating a series of dual-interferometer coupled silicon microrings, the coupling condition of the pump, signal, and idler beams can be engineered independently and then we carried out both the continuous-wave and pulse pumped four-wave mixing experiments to verify the dependence of conversion efficiency on the coupling conditions of the four interacting beams, respectively. Under the continuous-wave pump, the four-wave mixing efficiency gets maximized when both the pump and signal/idler beams are closely operated at the critical coupling point, while for the pulse pump case, the efficiency can be enhanced greatly when the pump and converted idler beams are all overcoupled. These experiment results agree well with our theoretical calculations. Our design provides a platform for explicitly characterizing the four-wave mixing under different pumping conditions, and offers a method to optimize the four-wave mixing, which will facilitate the development of on-chip all-optical signal processing with a higher efficiency or reduced pump power.  相似文献   

2.
We report on optical parametric oscillators (OPOs) based on large aperture periodically poled KTiOPO4 (PPKTP) and RbTiOAsO4 (PPRTA) pumped with high pulse energy and high average power Q-switched solid-state lasers. The OPOs were pumped with 1064-nm pulses of a diode-pumped Nd:YVO4 laser at 20 kHz repetition rate. The emitted signal wavelengths were 1.72 μm and 1.58 μm and the idler wavelengths were 2.79 μm and 3.26 μm, respectively. Pumping the PPKTP OPO with 7.2 W and the PPRTA OPO with 8 W average power, 2 W and 1.3 W total OPO output powers were generated. Two-dimensional measurements of the total OPO output power, the signal wavelength and the signal bandwidth in dependence on the crystal location indicated a good uniformity of the quasiphasematching structure over the entire 3-mm-thick crystals. This allowed pumping with larger pump beams and therefore with pulse energies of tens of millijoules. Pumping with different flash-lamp-pumped lasers, good OPO performance and high output pulse energies could be achieved for all pump lasers. Maximum input pulse energies of 56 mJ gave output pulse energies of as much as 18 mJ. The temperature tuning behaviors of both OPOs were measured, showing excellent agreement with calculated temperature tuning curves. New equations for temperature dispersion in RTA are presented. These results show that large-aperture PPKTP and PPRTA crystals are well suited for tunable nanosecond OPO operation with multi-watt average pump power and several tens of millijoules pump pulse energies. Received: 7 September 2001 / Published online: 7 November 2001  相似文献   

3.
We present a stable, high-power, fiber-laser-pumped, continuous-wave (cw), singly resonant optical parametric oscillator (SRO) for the mid-infrared in an output-coupled (OC) configuration, providing 17.5 W of total output power at 61% extraction efficiency. Using a single-frequency, cw Yb fiber laser at 1064 nm and a 50-mm-long MgO:PPLN crystal, through optimization of signal output coupling we generate up to 9.8 W of signal power in the near-infrared together with 7.7 W of idler power for 28.6 W of pump, while in the absence of output coupling, 8.6 W of idler power is generated for the same pump power at 30% efficiency. The SRO is tunable over 360 nm in the idler range. The deployment of signal output coupling results in a total tuning of 513 nm (120 nm of signal, 393 nm of idler) over which watt-level output power can be extracted. Through careful control of thermal effects we achieve a long-term peak-to-peak idler power stability of 5% over 14 hours near room temperature. The output beams have TEM00 spatial profile with M 2<1.28 for the idler and M 2<1.37 for the signal.  相似文献   

4.
I /kP=0.33and0.50. It is found that the ratio of pump depletion to maximal depletion as a function of the ratio of pump power to threshold power agrees with the plane-wave prediction to within 5%, for a wide range of focusing conditions. The observed trends are explained as resulting from intensity- and phase-dependent mechanisms. Received: 19 January 1998/Revised version: 13 March 1998  相似文献   

5.
The paper reports on an experimental investigation and numerical analysis of noncritically and critically phasematched LiB3O5 (LBO) optical parametric oscillators (OPOs) synchronously pumped by the third harmonic of a cw diode-pumped mode-locked Nd:YVO4 oscillator–amplifier system. The laser system generates 9.0 W of 355-nm mode-locked radiation with a pulse duration of 7.5 ps and a repetition rate of 84 MHz. The LBO OPO, synchronously pumped by the 355-nm pulses, generates a signal wave tunable in the blue spectral range 457–479 nm. With a power of up to 5.0 W at 462 nm and 1.7 W at 1535 nm the conversion efficiency is 74%. The OPO is characterized experimentally by measuring the output power (and its dependence on the pump power, the transmission of the output coupler and the resonator length) and the pulse properties (such as pulse duration and spectral width). Also the beam quality of the resonant and nonresonant waves is investigated. The measured results are compared with the predictions of a numerical analysis for Gaussian laser and OPO beams. In addition to the blue-signal output visible-red 629-nm radiation is generated by sum-frequency mixing of the 1.535-μm infrared idler wave with the residual 1.064-μm laser radiation. A power of 1.25 W of 1.535-μm idler radiation and 5.7 W of 1.064-μm laser light generated a red 629-nm output power of 2.25 W. Received: 2 February 2000 / Revised version: 28 July 2000 / Published online: 22 November 2000  相似文献   

6.
Using the photonic crystal fiber (PCF) with zero dispersion wavelengths of the fundamental mode and the second-order mode at 985 nm and 885 nm designed and fabricated in our lab, the anti-Stokes signals from 586.5 to 558 nm are efficiently generated in the second-order mode. When the pump working wavelength λ 0 increases from 830 to 880 nm and the input average power P in reduces from 43 to 25 mW, the output power of anti-Stokes signal increases 1.76 times, the power ratio of anti-Stokes signal at 558 nm to the residual pump component at 880 nm is estimated as 5:1, and the maximal conversion efficiency P as/P p0 can be up to 36%. The possible reasons for the difference from theoretical results are discussed. The combined effects of the interval between the pump working wavelength and zero dispersion wavelength and the input power on the signal conversion process are analyzed.  相似文献   

7.
Output power dependences of composite Nd3+:YVO4 Raman laser stationary generation on the longitudinal diode pump power are measured at different transmissions of the output mirror at the Stokes radiation frequency. The deviation of the measured dependences from linear is explained by the influence of thermal effects on both the overlap of the beams and diffraction losses. A method to estimate the laser and Stokes losses in the cavity and the parameters characterizing the overlap of the laser radiation with the pump and Stokes beams is proposed. A Stokes-component of power 2.1 W is obtained and corresponds to 12% diode-to-Stokes efficiency.  相似文献   

8.
We investigate the effect of beam coherence on four-wave mixing via reflection gratings in photorefractive media. For the case of phase conjugation, the results of our theoretical analysis indicate that partial coherence always leads to a drop of signal gain and phase conjugate reflectivity in non-depleted cases. In general, the mutual coherence of the signal beam and the pump beam can be enhanced due to the process of wave mixing. The mutual coherence of the phase conjugate beam and one of the pump beams depends on the beam intensity ratio as well as the optical path difference. This is distinctly different from the four-wave mixing case with a transmission grating. Received: 15 October 1999 / Revised version: 26 June 2000 / Published online: 7 February 2001  相似文献   

9.
A global optimization method - niche hybrid genetic algorithm (NHGA) based on fitness sharing and elite replacement is applied to optimize Nd3+-Yb3+ co-doped fiber lasers (NYDFLs) for obtaining maximum signal output power. With a objective function and different pumping powers, five critical parameters (the fiber length, L; the proportion of pump power for pumping Nd3+, η; Nd3+ and Yb3+ concentrations, NNd and NYb and output mirror reflectivity, Rout) of the given NYDFLs are optimized by solving the rate and power propagation equations. Results show that dividing equally the input pump power among 808 nm (Nd3+) and 940 nm (Yb3+) is not an optimal choice and the pump power of Nd3+ ions should be kept around 10-13.78% of the total pump power. Three optimal schemes are obtained by NHGA and the highest slope efficiency of the laser is able to reach 80.1%.  相似文献   

10.
New green self-frequency-doubling diode-pumped Nd:Ca4GdO(BO3)3 laser   总被引:1,自引:0,他引:1  
3+ :Ca4GdO(BO3)3 (Nd:GdCOB). 21 mW of green cw laser emission for an absorbed pump power of 820 mW were achieved under laser diode-pumping. 64 mW of green cw laser output were obtained with 1 W of absorbed pump power under titanium-sapphire pumping. Its availability in large-size crystals with good optical quality makes Nd:GdCOB a true challenger to the best SFD laser crystal reported so far: Nd:YAl3(BO3)4 (Nd:YAB or NYAB). Received: 2 March 1998/Revised version: 20 May 1998  相似文献   

11.
A compact and efficient diode-pumped intracavity-frequency-doubled Nd:GdVO4/KTP green laser is demonstrated with a flat–flat cavity design. With a 1.3 at. % Nd3+-doped GdVO4 crystal and pumped at the weak-absorption peak of 806 nm, the second-harmonic output power at 532 nm was measured to be 1.95 W at an incident pump power of 8.4 W, corresponding to an optical conversion efficiency of 23.2%. The output characteristic at the fundamental wavelength of 1.063 μm was investigated with two different pump wavelengths. More than 4.5-W output power was generated when the laser was pumped at 806.2 nm. Received: 26 July 2000 / Revised version: 18 September 2000 / Published online: 7 February 2001  相似文献   

12.
4 as a nonlinear crystal and obtained a pump threshold of 7 mW and an output power of 6 mW for a pump power of 40 mW. The OPO operated in a single longitudinal mode pair of a signal and an idler, over 1 h without mode hopping in the free-running condition. The signal and the idler wavelengths were tunable by 1 nm by changing the crystal temperature by 20 °C. The continuous tuning of the beat frequency between the signal and the idler was achieved by temperature tuning (slow control, 80 MHz/K) and E-field tuning (fast control, 0.75 MHz/V). We demonstrated the feasibility of frequency control by phase locking the beat frequency. The beat frequency could be successfully phase locked to a signal generated by a synthesizer through the electrooptic effect of the crystal. The phase locking could be maintained over 1 h. Received: 27 January 1998/Revised version: 9 March 1998  相似文献   

13.
The first-Stokes conversion efficiency for a stimulated Raman scattering (SRS) is usually very low in gaseous oxygen media. In 3.0 Mpa O2, a single longitudinal mode second harmonic Nd:YAG laser pump source gives a typical vibrational first-Stokes conversion efficiency of only 2.5%, In comparison, the accompanying stimulated Brillouin scattering (SBS) attains a reflectivity of 67%. However, by seeding an OPO beam into the Raman cavity, the first-Stokes photon conversion efficiency now attains a peak value of 54%, while the SBS reflectivity reduces to 5% in a 6.1 Mpa 41:59 O2/ He mixture. This 54% efficiency was obtained for a seeder laser pulse-width less than one half that of pump laser (6.8 ns). A first-Stokes peak power conversion efficiency as high as 88% has been obtained when the pump and seeder pulse peaks coincide. So, we may expect a higher first-Stokes photon conversion efficiency if the seeder pulse-width can be made equal to or larger than that of the pump pulse. On the other hand, the beam quality of the first-Stokes in an O2/ He mixture excels that of the pump laser for a seeder energy of 5 mJ and pump energy of 50 mJ. However, at pump energies higher than 105 mJ and a pump laser repetition rate of 10 Hz, the thermal defocusing effect worsens the first-Stokes beam quality. This thermal defocusing effect is a result of the Raman heat release and could be eliminated by fast circulating and cooling the Raman gas medium.  相似文献   

14.
Laser-induced thermal gratings (LITG) were generated in mixtures of ethylene and ammonia in nitrogen using mid-infrared laser radiation from a grating-tuned, low-pressure, pulsed (5 ms pulse width) CO2 laser, and read out with a continuous wave Nd:YLF laser. The LITG signal intensity was measured as a function of pressure (0.1–2 MPa) and temperature (300–800 K, at 0.1 and 1 MPa) by tuning the laser to the accidental coincidences of the 10P(14) and 10R(6) emission lines with molecular absorption transitions of C2H4 and NH3, respectively. Comparisons are made with theoretical predictions for the grating efficiency from a simple thermalization model. A theoretical comparison of the temporal LITG signal response for three excitation pulse shapes – a delta function, a realistic pulse, and a square wave is presented. Furthermore, it is shown that for NH3, most of the decrease of the LITG signal intensity with increasing temperature is due to the corresponding decrease in fractional molecular absorption of the pump beam radiation. The diagnostic capabilities of the mid-infrared LITG experiment is demonstrated for spatially resolved ethylene measurements with long laser pulses in a premixed stoichiometric CH4–air flame at atmospheric pressure. Received: 17 March 2000 / Revised version: 23 March 2000 / Published online: 13 September 2000  相似文献   

15.
We report a compact KTP-based intracavity optical parametric oscillator (IOPO) driven by a diode-end-pumped passively Q-switched Nd:YVO4/Cr:YAG laser. For the first time, we take the thermal lens effect of the Cr:YAG into consideration and discuss its impact on the signal output. Diode pump threshold as low as 0.52 W has been achieved, which is the lowest result reported to date. At the incident diode pump power of 4 W, we obtained the maximum signal average and peak power of 358 mW and 12.5 kW, respectively, corresponding to a diode-to-signal conversion efficiency of 9%. Moreover, cavity-dumping characteristic and pulse transforming process from 1064 to 1573 nm are qualitatively analyzed.  相似文献   

16.
We propose a new optical network device photorefractive connection module (PRCM) which operates as optical switch, amplifier and signal distributor controlled by parallel optical signals. Simple optical control bus systems can be realized by cascade connection of PRCMs. PRCM branches off a desired channel from the spatial multiplexed optical bus line by appropriate setting of the control beam pattern. PRCM uses cross polarized four wave mixing (CPFWM) with extraordinary polarized writing beams and an ordinary polarized reading beam to achieve a high connection gain to the next PRCM stage. We analyze the phase matching angle of CPFWM in which the optical paths of two pump beams are slightly different. The phase conjugate reflectivity indicating a branching ratio of optical signal is derived and calculated in consideration of the phase mismatching Δk. The optimum pump ratio and the grating vector orientation for the largest phase conjugate reflectivity and signal amplification factor are discussed for optical design of PRCM. Since the measured signal beam power after passing through the BaTiO3 crystal is three or four times higher than its incident power, PRCM has a sufficient connection gain for optical bus and interconnection systems.  相似文献   

17.
In this work, we report 1064 nm laser emission in Nd:YVO4 channel waveguides fabricated by carbon implantation. Typical threshold pump powers (∼808 nm) were ≥45 mW. Maximum conversion efficiency was 11.5% (29.6% slope efficiency), and up to 9 mW of signal was delivered. Sample lengths of 4 mm were sufficient to completely absorb the pump power. The special spectral characteristics of this material such as broad absorption band and superior cross sections compared to the YAG crystal makes it suitable for developing compact sources to be integrated in optoelectronic devices.  相似文献   

18.
在端面抽运固体激光器中,就如何改善在高抽运功率时输出激光的光束质量,提出一种激光器的设计方法。在激光器谐振腔中放入多根掺杂浓度不同的激光介质,利用激光介质内部产生的热透镜控制抽运光和基模振荡光的空间分布,并且最大限度地使抽运光的分布区和基模振荡光分布区重叠,实现抽运光与基模振荡光在空间上高度匹配,进而提高抽运光能量的利用效率和振荡光的光束质量。实验表明,在不同抽运功率下,抽运光和基模振荡光在晶体内部的光斑的空间分布可通过热透镜加以控制。在端面抽运功率200 W附近时,实现了抽运光与基模振荡光较高程度匹配,光束质量因子M2由14.7改善为4.1。  相似文献   

19.
We report two kinds of compact and efficient diode-end-pumped TEM00 lasers with output power >25 W at ≈50 W of incident pump power. One laser consists of a single 0.3 at. % Nd:YVO4 crystal in a V-type cavity, the other laser includes two 0.5 at. % Nd:YVO4 crystals in a linear cavity. Experimental results show that lowering Nd3+ concentration can be beneficial in extending the fracture-limited pump power but it also increases the sensitivity of the pump wavelength due to the overlapping efficiency. Received: 19 February 2000 / Revised version: 30 May 2000 / Published online: 20 September 2000  相似文献   

20.
Rb atomic absorption line reference for single Sr+ laser cooling systems   总被引:2,自引:0,他引:2  
85 Rb, 5s2S1/2(F”=2)→6p2P1/2(F’=2,3) absorption resonance with the 88Sr+, 5s2S1/2→5p2P1/2 transition is exploited to provide a simple, effective frequency reference for a laser cooling/fluorescence excitation source applied to single Sr+ ions. A modulation-free frequency stabilization system has been designed which uses the differential signal from two frequency-displaced beams traversing a Rb cell and which probe the Doppler-broadened Rb S–P lineshape at microwatt power levels. The method is applied to frequency lock a 422-nm frequency-doubled diode laser system that is used for excitation of a single 88Sr+ ion. Stable, long-term laser cooling and fluorescence are achieved using the frequency-stabilized 422-nm source resulting in observed ion confinement times without adjustment of over 8 h, together with an improvement in single-ion loading efficiency. Received: 12 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号