首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
When S-termination on a Ge(1 0 0) surface was desorbed at an elevated temperature and an atomic layer deposition (ALD) HfO2 film was deposited, interfacial thickness was less than 1 nm. As a result, the equivalent oxide thickness (EOT) of the stack on the initially S-terminated surface was thinner than that deposited on the O3-oxidized surface, while HfO2 film thickness was almost identical on both surfaces. Nevertheless, the HfO2 stack on the initially S-terminated surface exhibited improved leakage current characteristics due to an increase in barrier height. Its thinner but robust interface will contribute to the scaling down of gate oxide integrity.  相似文献   

2.
The Ge surfaces were cleaned and passivated by two kinds of chemical pretreatments: conventional combination of HF + (NH4)2S, and new one of HBr + (NH4)2S. The chemical states and stability at passivated Ge surfaces were carefully characterized. The influence of chemical surface treatments on the interface and electrical properties of Al2O3 gate dielectric films on Ge grown by atomic layer deposition (ALD) has been investigated deeply. It is found that the combination of HBr and (NH4)2S can remove more Ge-O bonds on the Ge surface compared to that of conventional HF and (NH4)2S with excellent stability. X-ray photoelectron spectroscopy (XPS) reveals that HBr and (NH4)2S treated Ge surface has a mixture states of GeOx (9.25%) and GeS (7.40%) while HF and (NH4)2S treated Ge surface has a mixture states of GeOx (16.45%) and GeS (3.37%). And the Ge-S peak from the surface of Ge substrates decreases a little after the HBr and (NH4)2S treated Ge surface was exposed in the ambient for 300 min, which suggests the Ge surface is stable to oxidants. The Al2O3 films on HBr and (NH4)2S treated Ge substrates exhibits better electrical properties such as large capacitance, decreased leakage current density by ∼two orders of magnitude, and less C-V hysteresis. This indicates that a reduction in charge traps possibly at the interface and more interface traps are terminated by sulfur. The surface treatment of HBr and (NH4)2S seems to be very promising in improving the quality of high-k gate stack on Ge substrates.  相似文献   

3.
GeH4 is thermally cracked over a hot filament depositing 0.7-15 ML Ge onto 2-7 nm SiO2/Si(1 0 0) at substrate temperatures of 300-970 K. Ge bonding changes are analyzed during annealing with X-ray photoelectron spectroscopy. Ge, GeHx, GeO, and GeO2 desorption is monitored through temperature programmed desorption in the temperature range 300-1000 K. Low temperature desorption features are attributed to GeO and GeH4. No GeO2 desorption is observed, but GeO2 decomposition to Ge through high temperature pathways is seen above 750 K. Germanium oxidization results from Ge etching of the oxide substrate. With these results, explanations for the failure of conventional chemical vapor deposition to produce Ge nanocrystals on SiO2 surfaces are proposed.  相似文献   

4.
Behavior of N atoms in atomic-order nitrided Si0.5Ge0.5(1 0 0) by heat treatment in Ar at 600 °C was investigated by X-ray photoelectron spectroscopy (XPS). For thermal nitridation by NH3 at 400 °C, nitridation of surface Si atoms tends to proceed preferentially over nitridation of surface Ge atoms. It is also clear that, with the heat treatment, nitridation of Si atoms proceeds by transfer of N atoms from Ge atoms. Angle-resolved XPS results show that Ge fraction beneath the surface nitrided layer increases significantly at 600 °C compared to the initial surface. These results indicate that preferential nitridation of Si atoms at surface over Ge atoms induces Ge segregation beneath the surface nitrided layer at higher temperatures above 400 °C.  相似文献   

5.
Control of the surface chemistry to prepare a robust termination on the Ge surface is crucial for the development of high-end Ge devices. In this study, oxidation of a H-terminated Ge surface was studied in air ambient and H2O using a multiple internal reflection Fourier transform infrared spectroscopy (MIR FT-IR) technique. Ge surface treated in less diluted HF exhibited a stronger Ge-H peak intensity, and the surface was easily oxidized in the air ambient. Therefore, it is believed that the treatment of the Ge surface in highly diluted HF solution has an advantage in suppressing the oxidation of Ge in the air ambient. For the oxidation of Ge(1 0 0) surface in air ambient, the Ge surface is attacked by oxidizing agents to break Ge-H and Ge-Ge bonds, and the transition GeOx layer is first formed, followed by a layer-by-layer GeO2 formation with the increase in exposure time. When the H-terminated Ge surface was treated in H2O, GeOx was mainly formed, the thickness of the oxide layer was not changed with an increase in treatment time, and the Ge surface was maintained in a suboxide state, which exhibits a different oxidation mechanism from that in air ambient.  相似文献   

6.
Bulk (1 0 0) n-GaSb surfaces have been treated with a sulphur based solution ((NH4)2S/(NH4)2SO4) to which sulphur has been added, not previously reported for the passivation of GaSb surfaces. Au/n-GaSb Schottky barrier diodes (SBDs) fabricated on the treated material show significant improvement compared to that of the similar SBDs on the as-received material as evidenced by the lower ideality factor (n), higher barrier height (?b) and lower contact resistance obtained. Additionally, the reverse leakage current, although not saturating, has been reduced by almost an order of magnitude at −0.2 V. The sample surfaces were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The native oxide, Sb–O, present on the as-received material is effectively removed on treating with ([(NH4)2S/(NH4)2SO4]+S) and (NH4)2S. Analysis of the as-received surface by XPS, prior to and after argon sputtering, suggests that the native oxide layer is ≤8.5 nm.  相似文献   

7.
In analogy with the case of Sr on Si [Y. Liang, S. Gan, M. Engelhard, Appl. Phys. Lett. 79 (2001) 3591], we studied surface crystallinity and oxidation behaviour of clean and Ba terminated Ge(1 0 0) surfaces as a function of oxygen pressure and temperature. The structural and chemical changes in the Ge surface layer were monitored by LEED, XPS and real-time RHEED. In contrast to the oxidation retarding effect, observed for 1/2 monolayer of Sr on Si, the presence of a Ba termination layer leads to a pronounced increase in Ge oxidation rate with respect to clean Ge. In fact, while the Ge(1 0 0) surface terminated with 1/2 ML Ba amorphizes for a pO2 of 10−2 Torr, LEED indicates that clean Ge forms a thin (4.5 Å), 1 × 1 ordered oxide upon aggressive O2 exposure (150 Torr, 200 °C, 30 min). We briefly discuss the origins for the difference in behaviour between Ba on Ge and Sr on Si.  相似文献   

8.
A SiGe-on-insulator (SGOI) structure with high Ge content and low density of dislocations is fabricated by a modified Ge condensation technique. The formation and elimination of stacking faults during condensation process are analyzed by transmission electron microscopy. A Si0.19Ge0.81OI substrate is fabricated utilizing two steps of oxidation and intermittent annealing. The time of oxidation or annealing at 900 °C is essential for the elimination of stacking faults in high Ge content SGOI substrate. The surface morphology of SGOI is investigated by atomic force microscopy and the defect density is evaluated from wet etching method. After the final condensation, the surface root-mean-square roughness (rms) of SiGe layer is kept below 1 nm and the threading defect density is controlled around 104 cm−2. The smooth surface and integrated lattice structure of SiGe layer indicate that the SGOI is suitable for heteroepitaxial growth of strained Ge, GaAs and III-V compounds.  相似文献   

9.
Density functional theory is employed to investigate atomic layer deposition mechanism of HfO2 on Ge(1 0 0)-2 × 1 surface. Both the HfCl4 and H2O half-reactions proceed through an analogous trapping-mediated mechanism. The neighboring hydroxyl in the reaction of HfCl4 with two Ge-OH* sites has a major effect on the formation of HfCl4 adsorbed complex. In addition, both the Ge and Si reaction pathways are qualitatively similar, however, adsorption of HfCl4 is favorable on Ge than on Si surface hydroxyl sites. By comparison of the reactions of H2O on the different surfaces, the differences in energy are negligible to alter the reaction mechanism.  相似文献   

10.
In this paper a comparative study of different wet-chemical etching procedures of vicinal Si(1 1 1) surface passivation is presented. The stability against oxidation under ambient atmosphere was studied by X-ray photoelectron spectroscopy and atomic force microscopy. The best results were achieved by the buffered HF etching and the final smoothing of the surface by hot (72 °C) NH4F. The procedures consisting of a large number of etching steps were unsatisfactory, since the probability of contamination during each step was increasing. The passivated surface was stable against oxidation for at least 3 h under ambient atmosphere.  相似文献   

11.
We have investigated cathodeluminescence (CL) of Ge implanted SiO2:Ge and GeO2:Ge films. The GeO2 films were grown by oxidation of Ge substrate at 550 °C for 3 h in O2 gas flow. The GeO2 films on Ge substrate and SiO2 films on Si substrate were implanted with Ge-negative ions. The implanted Ge atom concentrations in the films were ranging from 0.1 to 6.0 at%. To produce Ge nanoparticles the SiO2:Ge films were thermally annealed at various temperatures of 600-900 °C for 1 h in N2 gas flow. An XPS analysis has shown that the implanted Ge atoms were partly oxidized. CL was observed at wavelengths around 400 nm from the GeO2 films before and after Ge-implantation as well as from SiO2:Ge films. After Ge-implantation of about 0.5 at% the CL intensity has increased by about four times. However, the CL intensity from the GeO2:Ge films was several orders of magnitude smaller than the intensity from the 800 °C-annealed SiO2:Ge films with 0.5 at% of Ge atomic concentration. These results suggested that the luminescence was generated due to oxidation of Ge nanoparticles in the SiO2:Ge films.  相似文献   

12.
We analyzed the adsorption of ammonia (NH3) on the VSbO4(1 1 0) catalyst surface using density functional theory (DFT) calculations. We followed the evolution of the chemical bonds between different atoms of the resulting NH3/VSbO4 system and the changes in the electronic structure of the catalyst. NH3 preferential adsorption geometries were analyzed through the crystal orbital overlap population (COOP) concept and the density of states (DOS) curves. The VSbO4(1 1 0) surface exhibits Lewis and Brønsted acid sites on which the ammonia molecule can interact. On the Lewis acid site, NH3 adsorption resulted in the interaction between the N and a surface V-isolated cation. On Brønsted acid site, N interacted with a surface H coming from the chemical dissociation of water. The COOP analysis indicate that NH3 interaction on the VSbO4(1 1 0) surface is weak. In addition, the DOS curves show more developed electronic interactions for NH3 adsorption on Lewis acid site than over Brønsted acid site.  相似文献   

13.
We report desorption cross section measurements for one monolayer of chemisorbed carbon on a Mo(1 0 0) surface induced by sputtering with noble gas ions (Ne+, Ar+, Xe+) at different incident angles, ion energies, and substrate temperatures. Desorption cross sections were determined by using low-energy ion scattering (LEIS) to monitor the increase of the signal from the Mo substrate. A monolayer of p(1 × 1) carbon adatoms on the Mo(1 0 0) surface was created by dosing ethylene (C2H4) to the substrate at 800 K, and characterized by Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). We find that the carbon desorption cross section increases with increasing mass and energy of the impinging ions, and there is a maximum value for the desorption cross section at an incident angle for the ions of 30° from the surface plane. The desorption cross section also increases up to a substrate temperature of 300 °C. Values for the carbon desorption cross section for carbon adatoms on Mo(1 0 0) by 400-eV Xe+ ion sputtering are about 2 × 10−15 cm2, which is one order of magnitude higher than those for bulk carbon samples. This information is particularly important for evaluation of ion-engine lifetimes from ground-test measurements in which contaminant carbon is deposited on Mo accelerator grids, potentially altering the sputtering rate of the Mo. Our measurements show that monolayer amounts of carbon on Mo have desorption cross sections that are two orders of magnitude higher than estimates of what would be required to reduce the Mo erosion rate, and thus ground-test measurements can be used with confidence to predict ion-engine wear in space, from this perspective.  相似文献   

14.
The effects of Si substrate orientation and surface treatment on the morphology and density of Zinc oxide (ZnO) nanorods were investigated. The size and density of ZnO nanorods were influenced by Si substrate orientation and surface preparation. ZnO nanorods synthesized on the ideally H-terminated Si(1 1 1) prepared with an NH4F solution resulted in the biggest size and the lowest density. It is suggested that the smoother surface of the Si substrate and lattice shape match with a larger atomic distance result in the increase of the ZnO seedlayer's grain size, which in turn enhances the size of ZnO nanorods grown on it. The optical properties of the ZnO nanorods were affected by their size and crystallinity. The smallest ZnO nanorods with a preferential c-axis orientation synthesized on the HF-treated Si(1 1 1) surface showed the highest intensity ratio of UV to visible emission, and the biggest ZnO nanorods synthesized on the N2-sparged NH4F-treated Si(1 1 1) surface showed the lowest intensity ratio of UV to visible emission. Therefore, it can be concluded that Si substrate orientation and surface preparation significantly affect the optical properties of ZnO nanorods.  相似文献   

15.
This work presents the structural characterization of nanoclusters formed from a-Si:H/Ge heterostructures processed by rapid thermal annealing (RTA) at 1000 °C for annealing times varying between 30 s and 70 s. The a-Si:H layers were grown on electron cyclotron resonance (ECR) using SiH4 and Ar precursor gases. The Ge layer was grown in an e-beam evaporation system. The structural characterizations were performed by high-resolution X-ray diffractometer (HRXRD) on grazing incidence X-ray reflection mode (GIXRR) and micro-Raman measurements. The average grain size, Ge concentration (xGe) and strain were estimated from Lorentzian GIXRR peak fit. The average grain size varied from 3 nm to 7.5 nm and decreased with annealing time. The xGe increase with annealing time and varied from 8% to 19%, approximately. The strain calculated for (1 1 1), (2 2 0) and (3 1 1) peaks at 40 s, 50 s, 60 s and 70 s annealing time suggest the geometrical changes in nanoclusters according to process time.  相似文献   

16.
SiH4 and GeH4 dissociative adsorptions on a buckled SiGe(1 0 0)-2 × 1 surface have been analyzed using density functional theory (DFT) at the B3LYP level. The Ge alloying in the Si(1 0 0)-2 × 1 surface affects the dimer buckling and its surface reactivity. Systematic Ge influences on the reaction energetics are found in SiH4 and GeH4 reactions with four dimers of Si-Si, Ge-Si, Ge-Ge, and Si-Ge (∗ denotes the protruded atom). On a half H-covered surface, the energy barriers for silane and germane adsorption are higher than those on the pristine surface. The energy barrier for silane adsorption is higher than the corresponding barrier for germane adsorption. Rate constants are also calculated using the transition-state theory. We conclude that the SiGe surface reactivity in adsorption reaction depends on the Ge presence in dimer form. If the surface Ge is present in form of Ge-Ge, the surface reactivity decreases as the Ge-Ge content increases. If the surface Ge prefers to be in form of Ge-Si at low Ge contents, the surface reactivity increases first, then decreases at high Ge surface contents when Ge-Ge prevails. The calculated rate constant ratio of GeH4 adsorption on Si-Si over Ge-Ge at 650 °C is 2.1, which agrees with the experimental ratio of GeH4 adsorption probability on Si(1 0 0) over Si(1 0 0) covered by one monolayer Ge. The experimental ratio is 1.7 measured through supersonic molecular beam techniques. This consistency between calculation and experimental results supports that one monolayer of Ge on Si(1 0 0) exists in form of Ge-Ge dimer.  相似文献   

17.
C2H4 mediations were used to modify the Stranski-Krastanow growth mode of Ge dots on Si(0 0 1) at 550 °C by ultra-high vacuum chemical vapor deposition. With appropriate C2H4-mediation to modify the Si surface, the elongated Ge hut clusters can be transformed to highly uniform Ge domes with a high Ge composition at the core. These C2H4-mediated Ge dots, almost bounded by {1 1 3} facets, have an average diameter and height of 55 and 9 nm, respectively. We propose two major mechanisms to depict the formation of these C2H4-mediated Ge dots: (i) an almost hydrogen-passivated Si surface to limit the nucleation sites for dot formation, and (ii) the incorporation of Ge atoms, repelled by the C-rich areas, into the existing Ge dots. This work provides a useful scheme to tune the topography of Ge dots in an UHV/CVD condition for possible optoelectronic applications.  相似文献   

18.
Rapid thermal oxidation of high-Ge content (Ge-rich) Si1−xGex (x = 0.85) layers in dry O2 ambient has been investigated. High-resolution X-ray diffraction (HRXRD) and strain-sensitive two-dimensional reciprocal space mapping X-ray diffractometry (2D-RSM) are employed to investigate strain relaxation and composition of as-grown SiGe alloy layers. Characterizations of ultra thin oxides (∼6-8 nm) have been performed using Fourier transform infrared spectroscopy (FTIR) and high-resolution X-ray photoelectron spectroscopy (HRXPS). Formation of mixed oxide i.e., (SiO2 + GeO2) and pile-up of Ge at the oxide/Si1−xGex interface have been observed. Enhancement in Ge segregation and reduction of oxide thickness with increasing oxidation temperature are reported. Interface properties and leakage current behavior of the rapid thermal oxides have been studied by capacitance-voltage (C-V) and current-voltage (J-V) techniques using metal-oxide-semiconductor capacitor (MOSCAP) structures and the results are reported.  相似文献   

19.
We propose a dry method of cleaning Ge(1 0 0) surfaces based on nitrogen plasma treatment. Our in situ Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED) analyses demonstrate that surface contamination remaining after wet treatment was effectively removed by nitrogen radical irradiation at low substrate temperatures. The nitrogen plasma cleaned Ge(1 0 0) surface shows a well-ordered 2 × 1 reconstruction, which indicates the formation of a contamination-free Ge(1 0 0) surface with good crystallinity. We discuss the possible reaction mechanism considering how chemisorbed carbon impurities are removed by selective C-N bond formation and subsequent thermal desorption. These findings imply the advantage of plasma nitridation of Ge surfaces for fabricating nitride gate dielectrics, in which we can expect surface pre-cleaning at the initial stage of the plasma treatment.  相似文献   

20.
New reactants such as ozone dissolved in ultra-pure water have been widely used the last few years instead of the original Radio Corporation of America (RCA) cleaning (which is a combination of the Standard Cleaning 1 (SC1) and the Standard Cleaning 2 (SC2)). In a first part of the study (Microelectron. Eng. 83 (2006) 1986), we had quantified the efficiency of a new cleaning sequence (that calls upon HF and H2O/O3 solutions) on polished Si1−xGex virtual substrates (x = 0.2-0.5). We are discussing here the surface morphology and wetability together with the oxide thickness and structure typically obtained after this so-called “DDC-SiGe” wet cleaning. Flat surface morphologies are found after cleaning whatever the Ge content (from 20 to 50%). Typical root mean square roughness is around 0.4 nm. We have used X-ray Photoelectron Spectroscopy to determine the characteristics of the surface termination after this “DDC-SiGe” cleaning. An oxide mainly composed of SiO2 is formed, with a low fraction of Ge sub-oxide and GeO2. The distribution of chemical species is not that different from the one obtained after the use of a SC1 cleaning. However, the chemical oxide formed is slightly thicker. Such a HF/O3 cleaning leads, when used on thick Ge layers grown on Si, to the formation of a really thin Ge sub-oxide. Our oxidation model assumes a competition in O3 solutions between the oxidation rates of Si and Ge atoms (faster for Si) and the dissolution of the Ge oxide formed in solution. This mechanism, which implies the formation of a slightly porous oxide, is different from the one seeming to occur in SC1-based solutions. Indeed, the addition of surfactant in a SC1 solution modifies the oxidation rate compared to standard SC1 or O3-based solutions, suggesting a diffusion of reactants towards the interface between the SiGe and the oxide in formation, assisted by the reactions of species within the cleaning solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号