首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
向锋  李碧渊  黎应芬  周健  甘卫平 《中国物理 B》2016,25(7):78110-078110
A simple electroless plating process was employed to prepare silver-coated glass frits for solar cells. The surface of the glass frits was modified with polyvinyl-pyrrolidone(PVP) before the electroless plating process. Infrared(IR) spectroscopy,field emission scanning electron microscopy(FESEM), and x-ray diffraction(XRD) were used to characterize the PVP modified glass frits and investigate the mechanism of the modification process. It was found that the PVP molecules adsorbed on the glass frit surface and reduced the silver ions to the silver nanoparticles. Through epitaxial growth, these nanoparticles were uniformly deposited onto the surface of the glass frit. Silicon solar cells with this novel silver coating exhibited a photoelectric conversion efficiency increase of 0.33%. Compared with the electroless plating processes, this method provides a simple route to prepare silver-coated glass frits without introducing impurity ions.  相似文献   

2.
Size-adjustable silver nanoparticles were selectively in situ produced and immobilized on glass surface by simply UV exposing poly(vinylpyrrolidone) (PVP) film containing silver nitrate and 4,4′-diazostilbene-2,2′-disulfonic acid disodium salt (DAS) with the presence of a photomask, during which the crosslink between PVP and DAS completed and the silver nitrate was reduced to silver nanoparticles under the assistance of UV. Because the reduction speed of silver nitrate is much slower than the crosslink reaction of PVP, and a mount of unreduced silver nitrate still existed in the formed PVP micro-scale patterns after removing unexposed PVP by water, we can easily adjust the size of silver nanoparticles through further controlling the reduction of unreduced silver nitrate in the formed PVP micro-scale patterns. Optical microscope, UV–vis-spectroscopy, AFM and SEM-EDX were used to characterize the morphology and distribution of those silver nanoparticles immobilized on glass surface. The results indicate that it is an effective way to immobilize silver nanoparticles with high selectivity.  相似文献   

3.
The influence of annealing conditions on the properties of reinforced silver-embedded silica matrix was systematically investigated in the present study. The samples were prepared via a recently reported method using sodium silicate as a silica precursor. Aluminium ions were used to reinforce and improve the chemical durability of silver-embedded silica; and the mole ratio of the precursors was fixed at Al/Ag = 1. The properties of the final product were examined in relation to its counterparts; namely pure silica, aluminium-embedded silica (without silver), and silver doped silica (without aluminium). The materials were heat treated at the range of 600-1000 °C under the constant supply of argon (inert atmosphere). The properties of the final product were compared with those of the previously reported materials prepared via the same method but calcined in air. The current material was found to have pure silver nanoparticles (without AgCl nanoparticles) while the previous material had both silver and AgCl nanoparticles. The results demonstrate that materials with more desirable properties can be obtained by this newly developed technique while utilizing sodium silicate, which is relatively cheap, as a silica precursor. This may significantly boost the industrial production of the silver-embedded silicas for various applications.  相似文献   

4.
We performed laser ablation of a silver plate in polyvinylpyrrolidone (PVP) aqueous solutions to prepare silver nanoparticles. Secondary laser irradiation onto the prepared colloidal solutions was also carried out. It was revealed that the formation efficiency was increased by addition of PVP as well as the stability of nanoparticles. The result of shadowgraph measurements suggested that the increased ablation efficiency by PVP is attributable to increased secondary etching efficiency by the solvent-confined plasma toward the silver plate. On the other hand, the size decrease of the nanoparticles by addition of PVP was more remarkable during the secondary irradiation process than in the laser ablation (nanoparticle preparation) process. This result indicates that emitted materials interact less sufficiently with PVP molecules in the laser ablation process than in the secondary laser irradiation process.  相似文献   

5.
Triangular, truncated triangular, quadrangular, hexagonal, and net-structured silver nanoplates as well as decahedral silver nanoparticles were manipulatively prepared starting from silver nitrate and silver seeds in the presence of poly(ethylene glycol) (PEG), poly(N-vinyl pyrrolidone) (PVP), and Tween 80 at room temperature, respectively. UV-vis spectroscopy, XRD, HRTEM, SAED, and FTIR were used to illustrate the crystal growth process and to characterize the resultant silver nanoparticles. It was found that the silver seeds and organic modifiers synergistically affected the morphology evolution of the silver nanoparticles. The co-presence of silver seeds and PEG was beneficial to the formation of triangular and truncated triangular silver nanoplates; the silver seeds and PVP favored the formation of polygonal silver nanoplates; the silver seeds and Tween 80 preferred to the formation of net-structured silver plates. The morphology evolution of the resultant silver nanoparticles was correlated with the crystallinity of the silver seeds and the adsorption ability of the organic modifiers on the crystal surfaces.  相似文献   

6.
We report on the preparation and characterization of Ag/LiCoO2 nanofibers (NFs) via the sol–gel electrospinning (ES) technique. Ag nanoparticles (NPs) were produced in an aqueous polyvinyl pyrrolidone (PVP) solution by using AgNO3 precursor. A viscous lithium acetate/cobalt acetate/polyvinylalcohol/water (LiAc/(CoAc)2/PVA/water) solution was prepared separately. A Ag NPs/PVP/water solution was prepared and added to this viscous solution and magnetically stirred to obtain the final homogeneous electrospinning solution. After establishing the proper electrospinning conditions, as-spun precursor Ag/LiAc/Co(Ac)2/PVA/PVP NFs were formed and calcined in air at a temperature of 600 °C for 3 h to form well-crystallized porous Ag/LiCoO2 NFs. Various analytical characterization techniques such as UV–vis, SEM, TEM, TGA, XRD, and XPS were performed to analyze Ag NPs, as-spun and calcined NFs. It was established that Ag NPs in the precursor Ag/LiAc/Co(Ac)2/PVA/PVP NFs are highly self-aligned as a result of the behavior of Ag in the electric field of the electrospinning setup and the interaction of Ag ions with Li and Co ions in the NF. Ag/LiCoO2 NFs exhibit a nanoporous structure compared with un-doped LiCoO2 NFs because the atomic radius of Ag is larger than the radius of Co and Li ion; thus, no substitution between Ag and Li or Ag and Co atoms occurs, and Ag NPs are located at the interlayer of LiCoO2 while some are left in the fiber.  相似文献   

7.
Silver-decorated silica spheres of submicrometer-sized silica spheres with a core-shell structure were obtained based on a seed-mediated growth process, where silver nanoparticles were firstly formed from reducing Ag+ to Ag0 in N,N-dimethylformamide (DMF) in the presence of poly(vinylpyrrolidone) (PVP) as protective agent under ultrasound irradiation, followed by the growth of silver shell served silver nanoparticles as nucleation sites and formaldehyde as reducer. The results revealed that the terms of PVP addition and ultrasonic surroundings had great influence on the fabrication of silver seeds.  相似文献   

8.
Synthesis of silver nanoparticles based on a polyol process and variable frequency microwave (VFM) was investigated. Comparing to a thermal method, the reaction by VFM radiation was much faster. The effects of silver nitrate concentration, poly(N-vinylpyrrolidone) (PVP) concentration, reaction time and reaction temperature were studied. It was found that the higher concentration of silver nitrate, longer reaction time and higher temperature increased the particle size while the higher concentration of PVP decreased the particle size.  相似文献   

9.
Ag-PVP复合薄膜的制备及其光谱特性   总被引:1,自引:0,他引:1  
在聚乙烯吡咯烷酮 ( PVP)乙醇溶液中以硝酸银为原料 ,采用旋涂法 ( spin coating)原位合成了 Ag- PVP复合薄膜。由于薄膜表面 Ag胞质团的共振吸收 ,所以在 430~ 45 0 nm范围内薄膜的吸收光谱有一较尖锐的吸收峰 ,随热处理温度的升高 ,吸收峰增强、变宽。采用复合介质理论计算了 Ag- PVP复合薄膜的吸收光谱 ,实验结果和理论计算相一致。  相似文献   

10.
《Current Applied Physics》2010,10(4):1005-1008
Silver (Ag) nanoparticles (∼3 nm) were synthesized using silver nitrate as the starting precursor, ethylene glycol as solvent and poly (N-vinylpyrrolidone) (PVP) introduced as a capping agent. These nano-Ag particles were reinforced in nylon matrix by electrospinning of nylon-6/Ag solution in 2,2,2-trifluoroethanol and composite nanofibrous membranes were synthesized. The effects of solution concentration and relative humidity (RH) on the resultant fibrous membranes were studied. Scanning electron microscopy and Transmission electron microscopy was used to study the size and morphology of the fibers. It was observed that concentration and RH could be used to modulate the fiber diameter. Tensile test was used to evaluate the mechanical property of these electrospun composite membranes. The composite membranes showed higher strength (approx. 2–3 times increase in strength) compare to as synthesized nylon fibers.  相似文献   

11.
Poly (vinyl alcohol) (PVA) and poly (vinyl pyrrolidone) (PVP) nanofibers embedding Ag nanoparticles (5–18 nm) have been prepared successfully by electrospinning at room temperature. Scanning electron microscope (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier transform IR spectra (FTIR), and Raman scattering were used to characterize the structure and properties of Ag nanoparticle-embedded PVA and PVP nanofibers before and after heat treatment at different temperature. The antibacterial activity of Ag nanoparticle-embedded PVP nanofibers after heat treatment was also tested, which indicated that the biological activity of yeast cells was effectively inhibited by these Ag nanoparticle-embedded PVP nanofibers.  相似文献   

12.
The growth of silver chloride nanoparticles within the pore channels of functionalized SBA-15 mesoporous was achieved by sequential dipping steps in alternating bath of potassium chloride and silver nitrate under ultrasound irradiation at pH=9. The effects of sequential dipping steps in growth of the AgCl nanoparticles have been studied. The growth and formation of AgCl nanoparticles inside the sulfonated SBA-15 were characterized by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Antibacterial activity of the synthesized materials was investigated against Escherichia coli (E.coli) using the conventional diffusion-disc method. The materials showed high antibacterial activity.  相似文献   

13.
A new route to prepare CaCO3 nanoparticles/polyvinylpyrrolidone (PVP) nanofibers is reported. An aqueous solution of K2CO3 was added to a solution of CaCl2/PVP, resulting in in-situ preparation of CaCO3 nanoparticles. Then composite nanofibers containing CaCO3 nanoparticles were successfully prepared by electrospinning. The morphology of the resulting composite nanofibers was characterized by field-emission scanning electron microscopy. In addition, the products were characterized by thermogravimetry analysis and Fourier transform infrared spectra.  相似文献   

14.
Su  Huilan  Han  Jie  Dong  Qun  Xu  Jia  Chen  Ying  Gu  Yu  Song  Weiqiang  Zhang  Di 《Applied Physics A: Materials Science & Processing》2011,102(2):429-434
Silver chloride (AgCl) nanocrystals were formed and grown on silk fibroin fibers (SFFs) by a room-temperature process. Practically, the degummed SFFs were immersed into silver nitrate solution and sodium chloride solution in turn. The amino acids on the SFF surface were negatively charged in alkaline impregnant, providing locations to immobilize silver ions and form silver chloride seeds. AgCl nanocrystals can further grow into cubic AgCl nanocrystals with an edge of about 100 nm. The morphologies of the AgCl nanocrystals were mostly influenced by the concentration of sodium chloride solution and the special configurations of the SFFs. The target AgCl/SFF nanocomposites constructed by AgCl nanocrystals and substrate SFFs could be used as photocatalysts in water splitting and antibacterial agents. This work provides an important example in the introduction of natural biofibers to the synthesis of functional hybrid nanocomposites by a green and mild technique.  相似文献   

15.
Silver nanoparticles with size less than 50 nm were synthesized from silver nitrate, polyvinylpyrrolidone (PVP) and ethylene glycol, where these chemicals acted as metal precursor, stabilizer and reducing agent, respectively. Then a conductive silver ink was prepared with a suitable solvent by adding a viscosifier, hydroxyethyl-cellulose (HEC), and a surfactant, diethylene glycol (DEG). The combined effect of both viscosifier and surfactant on the physical property of the silver ink was analyzed by measuring the contact angle of the silver ink on a cellulose film. Moreover, the influences of PVP molecular weight and reaction temperature on the size of the silver nanoparticles were analyzed. Then the silver ink was coated on the cellulose film by spin coating and the effects of different solvents, sintering temperatures and solid contents on its electrical resistivity were examined. It was found that, with 50 % co-solvent of deionized water and DEG and solid content of around 50 %, the silver ink exhibited the lowest resistivity. This ink can be used for inkjet printing of conductive patterns on cellulose films.  相似文献   

16.
Dekel B  Katzir A 《Optics letters》2001,26(20):1553-1555
Since the index of refraction of AgCl(x)Br(1-x) (x<1) is higher than that of AgCl, by diffusing Br(-) ions into AgCl it was possible to control the index and thus obtain planar waveguides made from silver chlorobromide (AgClBr) on a AgCl substrate. Silver halides are transparent in the mid IR, and it was therefore possible to characterize the waveguides by transmission of 10.6-mum CO(2)-laser radiation through them. In a typical case, the thickness was optically measured and was found to be 65mum , and the propagation loss was 16 dB/cm. The output-beam profile distribution was determined experimentally and found to be well correlated with a numerical analysis simulation based on a ray-tracing model of the eikonal equation. Planar waveguides that are transparent in the mid IR will likely be useful in numerous applications.  相似文献   

17.
Characterizing interfacial reactions is a crucial part of understanding the behavior of nanoparticles in nature and for unlocking their functional potential. Here, an advanced nanostructure characterization approach to study the corrosion processes of silver nanoparticles (Ag‐Nps), currently the most highly produced nanoparticle for nanotechnology, is presented. Corrosion of Ag‐Nps under aqueous conditions, in particular in the presence of organic matter and halide species common to many natural environments, is of particular importance because the release of toxic Ag+ from oxidation/dissolution of Ag‐Nps may strongly impact ecosystems. In this context, Ag‐Nps capped with polyvinolpyrrolidone (PVP) in contact with a simple proxy of organic matter in natural waters [polyacrylic acid (PAA) and Cl? in solution] has been investigated. A combination of synchrotron‐based X‐ray standing‐wave fluorescence yield‐ and X‐ray diffraction‐based experiments on a sample consisting of an approximately single‐particle layer of Ag‐Nps deposited on a silicon substrate and coated by a thin film of PAA containing Cl revealed the formation of a stable AgCl corrosion product despite the presence of potential surface stabilizers (PVP and PAA). Diffusion and precipitation processes at the Ag‐Nps–PAA interface were characterized with a high spatial resolution using this new approach.  相似文献   

18.
在90 ℃水浴条件下,以粒径为10 nm的纳米金做晶种,用柠檬酸三钠还原硝酸银,制备了平均粒径为30 nm的(Au)核(Ag)壳纳米微粒,用高速离心纯化除去过量的柠檬酸三钠获得了较纯的(Au)核(Ag)壳纳米微粒。在pH 3.8的HAc-NaAc缓冲溶液中,Fe2+催化H2O2反应产生的羟基自由基可氧化(Au)核(Ag)壳纳米微粒生成银离子。离心后,离心液中的银离子可用火焰原子吸收光谱法在328.1 nm波长处测量。随着H2O2浓度增大,离心液中银离子浓度增加,其吸光度值增加。H2O2浓度在2.64~42.24 μmol&#183;L-1范围内与上清液中银离子的原子吸收值ΔA呈良好的线性关系,回归方程为ΔA=0.014c-0.013 1, 相关系数为0.998 4,检出限为0.81 μmol&#183;L-1 H2O2。当用于水样中H2O2的测定,获得了满意的结果。  相似文献   

19.
Use of nanotechnology in biological systems by the synthesis of metallic nanoparticles is a burning area of research in recent times. In the present investigation, aqueous extract of Andrographis paniculata was used to produce silver nanoparticles by reduction of silver nitrate. It was noted that the synthesizing process was quite rapid and silver nanoparticles form within minutes of silver ions coming in contact with plant extract. UV-Vis spectrum of the aqueous medium containing silver ions indicated a peak at 432 nm corresponding to the plasmon absorbance of the silver nanoparticles. Fourier transform infrared spectroscopic analysis of the silver nanoparticles showed the presence of proteins that might be acting as capping agents around the nanoparticles. From scanning electron microscopy analysis, the size of the silver nanoparticles was measured and it was found that the average size was between 40 and 60 nm. Furthermore, the antibacterial activity of synthesized silver nanoparticles exhibited effective inhibition zones against seven bacterial strains tested. Among the bacteria tested Pseudomonas aeruginosa was found to be most susceptible to the silver nanoparticles. Phytochemical screening of the plant extract indicated the presence of alkaloids, flavonoids, amino acids, saponins, tannins, and terpenoids.  相似文献   

20.
PVP/洛美沙星-铽纳米粒子微波合成及其荧光特性研究   总被引:2,自引:1,他引:1  
以PVP为表面修饰剂,用微波合成法制备了粒径分布均匀性能稳定的洛美沙星-铽(LELX-Tb3 )纳米粒子,用扫描电镜、红外光谱和荧光光谱进行了表征.重点分析了PVP的引入对洛美沙星-铽纳米粒子的粒径分布、粒子形貌、红外光谱和荧光光谱的影响,发现PVP修饰后的洛美沙星-铽纳米粒子具有更均匀的尺寸分布,荧光发射峰强度增强;确证了PVP的用量是制备洛美沙星-铽纳米粒子的一个重要因素;探讨了PVP对LFLX-Tb3 荧光的增敏机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号