首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Unusual ionization behavior was observed with novel antineoplastic curcumin analogues during the positive ion mode of matrix‐assisted laser desorption ionization (MALDI) and dopant‐free atmospheric pressure photoionization (APPI). The tested compounds produced an unusual significant peak designated as [M ? H]+ ion along with the expected [M + H]+ species. In contrast, electrospray ionization, atmospheric pressure chemical ionization and the dopant‐mediated APPI (dopant‐APPI) showed only the expected [M + H]+ peak. The [M ? H]+ ion was detected with all evaluated curcumin analogues including phosphoramidates, secondary amines, amides and mixed amines/amides. Our experiments revealed that photon energy triggers the ionization of the curcumin analogues even in the absence of any ionization enhancer such as matrix, solvent or dopant. The possible mechanisms for the formation of both [M ? H]+ and [M + H]+ ions are discussed in this paper. In particular, three proposed mechanisms for the formation of [M ? H]+ were evaluated. The first mechanism involves the loss of H2 from the protonated [M + H]+ species. The other two mechanisms include hydrogen transfer from the analyte radical cation or hydride abstraction from the neutral analyte molecule. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The high performance liquid chromatography (HPLC) separation methodology employed in the study of polyalkene additive compounds by atmospheric pressure ionization mass spectrometry (API-MS) was undertaken. Both atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) were examined. APPI (including dopant-assisted APPI) was found to be an inferior ionization technique to APCI in all cases. APCI ion responses were found to be highly dependent upon the organic solvent type used in the HPLC separations. Namely, employing a water/methanol gradient in place of a water/acetonitrile or a water/acetone gradient yielded improvements in analyte ion intensities between 2.3- and 52-fold for the liquid chromatography-mass spectrometry (LC-MS) experiments. Analyte and mobile phase solvent ionization energies were found to be only partially responsible, whereas mobile phase cluster formation and hydration was also implicated. Mobile phase component modification is demonstrated to be an important consideration when developing new, or modifying existing HPLC separations for use in LC-MS experiments in order to enhance analyte sensitivity for a wide variety of common polyalkene additives.  相似文献   

3.
We report on a novel method for atmospheric pressure ionization of compounds with elevated electron affinity (e.g., nitroaromatic compounds) or gas phase acidity (e.g., phenols), respectively. The method is based on the generation of thermal electrons by the photo-electric effect, followed by electron capture of oxygen when air is the gas matrix yielding O2 or of the analyte directly with nitrogen as matrix. Charge transfer or proton abstraction by O2 leads to the ionization of the analytes. The interaction of UV-light with metals is a clean method for the generation of thermal electrons at atmospheric pressure. Furthermore, only negative ions are generated and neutral radical formation is minimized, in contrast to discharge- or dopant assisted methods. Ionization takes place inside the transfer capillary of the mass spectrometer leading to comparably short transfer times of ions to the high vacuum region of the mass spectrometer. This strongly reduces ion transformation processes, resulting in mass spectra that more closely relate to the neutral analyte distribution. cAPECI is thus a soft and selective ionization method with detection limits in the pptV range. In comparison to standard ionization methods (e.g., PTR), cAPECI is superior with respect to both selectivity and achievable detection limits. cAPECI demonstrates to be a promising ionization method for applications in relevant fields as, for example, explosives detection and atmospheric chemistry.
Figure
?  相似文献   

4.
In this paper, we investigated the suitability of tetrahydofuran (THF) as a dopant and compared it against other common dopants for atmospheric pressure photoionization mass spectrometry (APPI‐MS). In a systematic analysis of 37 drug standards and 100 Wyeth proprietary drug candidates, THF was found to increase ionization efficiency as high as 33‐fold when introduced through a syringe pump at a flow rate of 20 µL/min, and as high as 114‐fold when introduced through the mobile phase at 100 µL/min. As a dopant, THF is as effective as acetone, better than anisole, and slightly less effective than toluene for the majority of the test compounds. The increase in ionization efficiency by THF was found to be compound‐dependent. THF was more effective in facilitating the ionization of polar compounds than of non‐polar compounds. With THF, toluene and acetone as dopants, a single type of molecular ion ([M+H]+ or M+?) is produced for analyte molecules. However, anisole can cause the formation of an ion cluster for polar analytes. The cluster contains [M–2H+H]+, M+?, and [M+H]+ ions with varied ratios. This complexity may make interpretation of spectra difficult for unknown compounds when complimentary data are not available. Our findings indicate that THF is a suitable dopant in the daily usage for increasing ionization efficiency, especially when THF is used as the mobile phase or as an organic modifier in the mobile phase. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The effect of gas-phase proton transfer reactions on the mass spectral response of solvents and analytes with known gas-phase proton affinities was evaluated. Methanol, ethanol, propanol and water mixtures were employed to probe the effect of gas-phase proton transfer reactions on the abundance of protonated solvent ions. Ion-molecule reactions were carried out either in an atmospheric pressure electrospray ionization source or in the central quadrupole of a triple-quadrupole mass spectrometer. The introduction of solvent vapor with higher gas-phase proton affinity than the solvent being electrosprayed caused protons to transfer to the gas-phase solvent molecules. In mixed solvents, protonated solvent clusters of the solvent with higher gas-phase proton affinity dominated the resulting mass spectra. The effect of solvent gas-phase proton affinity on analyte response was also investigated, and the analyte response was suppressed or eliminated in solvents with gas-phase proton affinities higher than that of the analyte.  相似文献   

6.
The technique of atmospheric pressure photoionization (APPI) has several advantages over electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), including efficient ionization of nonpolar or low charge affinity compounds, reduced susceptibility to ion suppression, high sensitivity, and large linear dynamic range. These benefits are greatest at low flow rates (i.e., 相似文献   

7.
It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric pressure photoionization, direct analysis in real time, and many more. In fact, it is well established that cluster ions are the primary carriers of the net charge generated. Nevertheless, cluster ion chemistry has only been sporadically included in the numerous proposed ionization mechanisms leading to charged target analytes, which are often protonated molecules. This paper series, consisting of two parts, attempts to highlight the role of cluster ion chemistry with regard to the generation of analyte ions. In addition, the impact of the changing reaction matrix and the non-thermal collisions of ions en route from the atmospheric pressure ion source to the high vacuum analyzer region are discussed. This work addresses such issues as extent of protonation versus deuteration, the extent of analyte fragmentation, as well as highly variable ionization efficiencies, among others. In Part 1, the nature of the reagent ion generation is examined, as well as the extent of thermodynamic versus kinetic control of the resulting ion population entering the analyzer region.
Figure
?  相似文献   

8.
Positive-mode atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS n ) was tested for the differentiation of regioisomeric aromatic ketocarboxylic acids. Each analyte forms exclusively an abundant protonated molecule upon ionization via positive-mode APCI in a commercial linear quadrupole ion trap (LQIT) mass spectrometer. Energy-resolved collision-activated dissociation (CAD) experiments carried out on the protonated analytes revealed fragmentation patterns that varied based on the location of the functional groups. Unambiguous differentiation between the regioisomers was achieved in each case by observing different fragmentation patterns, different relative abundances of ion-molecule reaction products, or different relative abundances of fragment ions formed at different collision energies. The mechanisms of some of the reactions were examined by H/D exchange reactions and molecular orbital calculations.  相似文献   

9.
The porphyrinoids chemistry is greatly dependent on the data obtained in mass spectrometry. For this reason, it is essential to determine the range of applicability of mass spectrometry ionization methods. In this study, the sensitivity of three different atmospheric pressure ionization techniques, electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization, was tested for several porphyrinods and their metallocomplexes. Electrospray ionization method was shown to be the best ionization technique because of its high sensitivity for derivatives of cyanocobalamin, free‐base corroles and porphyrins. In the case of metallocorroles and metalloporphyrins, atmospheric pressure photoionization with dopant proved to be the most sensitive ionization method. It was also shown that for relatively acidic compounds, particularly for corroles, the negative ion mode provides better sensitivity than the positive ion mode. The results supply a lot of relevant information on the methodology of porphyrinoids analysis carried out by mass spectrometry. The information can be useful in designing future MS or liquid chromatography–MS experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Atmospheric pressure chemical ionization is known for producing unusual artifacts of the ionization process in some cases. In this work, processes occuring in atmospheric pressure chemical ionization/MS of orotic acid that afforded ions accompanying protonated and deprotonated orotic acid molecules in the spectra were studied. Two processes ran in parallel in the ion source: decarboxylation of neutral orotic acid and collision‐induced dissociation of its protonated or deprotonated form. A procedure discerning pre‐ionization decomposition and post‐ionization dissociation by manipulating ion source parameters was proposed. Experiments with isotopically labeled solvents confirmed ion–molecule reactions of the product of collision‐induced dissociation of protonated orotic acid with solvent molecules in the ion source and even under vacuum in the ion trap. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The behavior in atmospheric pressure chemical ionization of selected model polycyclic aromatic compounds, pyrene, dibenzothiophene, carbazole, and fluorenone, was studied in the solvents acetonitrile, methanol, and toluene. Relative ionization efficiency and sensitivity were highest in toluene and lowest in methanol, a mixture of molecular ions and protonated molecules was observed in most instances, and interferences between analytes were detected at higher concentrations. Such interferences were assumed to be caused by a competition among analyte molecules for a limited number of reagent ions in the plasma. The presence of both molecular ions and protonated analyte molecules can be attributed to charge-transfer from solvent radical cations and proton transfer from protonated solvent molecules, respectively. The order of ionization efficiency could be explained by incorporating the effect of solvation in the ionization reactions. Thermodynamic data, both experimental and calculated theoretically, are presented to support the proposed ionization mechanisms. The analytical implications of the results are that using acetonitrile (compared with methanol) as solvent will provide better sensitivity with fewer interferences (at low concentrations), except for analytes having high gas-phase basicities.  相似文献   

12.
The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05–0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M+. decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques.
Graphical Abstract ?
  相似文献   

13.
This study demonstrates how positive ion atmospheric pressure photoionization-ion mobility spectrometry-mass spectrometry (APPI-IMS-MS) can be used to produce different ionic forms of an analy te and how these can be separated. When hexane:toluene (9:1) is used as a solvent, 2,6-di-tert-butylpyridine (2,6-DtBPyr) and 2,6-di-tert-4-methylpyridine (2,6-DtB-4-MPyr) efficiently produce radical cations [M]+ and protonated [M + H]+ molecules, whereas, when the sample solvent is hexane, protonated molecules are mainly formed. Interestingly, radical cations drift slower in the drift tube than the protonated molecules. It was observed that an oxygen adduct ion, [M + O2]+, which was clearly seen in the mass spectra for hexane:toluene (9:1) solutions, shares the same mobility with radical cations, [M]+. Therefore, the observed mobility order is most likely explained by oxygen adduct formation, i.e., the radical cation forrning a heavier adduct. For pyridine and 2-tert-butylpyridine, only protonated molecules could be efficiently formed in the conditions used. For 1- and 2-naphthol it was observed that in hexane the protonated molecule typically had a higher intensity than the radical cation, whereas in hexane:toluene (9:1) the radical cation [M]+ typically had a higher intensity than the protonated molecule [M + H]+. Interestingly, the latter drifts slower than the radical cation [M]+, which is the opposite of the drift pattern seen for 2,6-DtBPyr and 2,6-DtB-4-MPyr.  相似文献   

14.
Experiments have been performed to elucidate the mechanism of proton transfer in ternary clusters containing the matrix-assisted laser-desorption ionization (MALDI) matrix sinapinic acid, nonchromophoric analytes (proline, methionine, and prolylmethionine), and argon. To investigate the mechanism of intracluster proton transfer, ionizing laser power studies were performed at 266 and 355 nm. Baseline studies show that two photons are required at both wavelengths for the formation of sinapinic acid radical cations from sinapinic acid/argon clusters. Studies of the ternary sinapinic acid/biomolecule/argon clusters show that, in all cases, the photon dependence for protonation of the biomolecule is the same as that for formation of the sinapinic acid radical cation. Furthermore, the slopes of the power plots are generally between 1.5 and 2.0, consistent with a two photon ionization process. No evidence of negative ion formation is detected in the negative ion mass spectra. The combined results are consistent with a mechanism of biomolecular intracluster protonation via proton transfer from the photoionized sinapinic acid radical cation. Wavelength dependent trends in matrix and analyte fragment ion formation in conventional MALDI mass spectra and the cluster proton transfer mass spectra were noted. The possible contribution of cluster proton transfer to the analyte protonation mechanism in conventional MALDI is discussed.  相似文献   

15.
Laser-based ion mobility (IM) spectrometry was used for the detection of neuroleptics and PAH. A gas chromatograph was connected to the IM spectrometer in order to investigate compounds with low vapour pressure. The substances were ionized by resonant two-photon ionization at the wavelengths λ?=?213 and 266 nm and pulse energies between 50 and 300 μJ. Ion mobilities, linear ranges, limits of detection and response factors are reported. Limits of detection for the substances are in the range of 1–50 fmol. Additionally, the mechanism of laser ionization at atmospheric pressure was investigated. First, the primary product ions were determined by a laser-based time-of-flight mass spectrometer with effusive sample introduction. Then, a combination of a laser-based IM spectrometer and an ion trap mass spectrometer was developed and characterized to elucidate secondary ion–molecule reactions that can occur at atmospheric pressure. Some substances, namely naphthalene, anthracene, promazine and thioridazine, could be detected as primary ions (radical cations), while other substances, in particular acridine, phenothiazine and chlorprothixene, are detected as secondary ions (protonated molecules). The results are interpreted on the basis of quantum chemical calculations, and an ionization mechanism is proposed.  相似文献   

16.
In liquid chromatography/mass spectrometry (LC/MS) of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), attachment of an anion to the analyte molecule is the major way of producing characteristic ions under electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) conditions. The formation of RDX cluster ions in LC/MS and the origin of the clustering agents have been studied. In order to determine whether the clustering anions originate from self-decomposition of RDX in the source or from impurities in the mobile phase, isotopically labeled RDX ((13)C(3)-RDX and (15)N(6)-RDX) and isotopically labeled glycolic acid, acetic acid, ammonium formate and formaldehyde have been used in order to establish the composition and formation route of RDX adduct ions produced in ESI and APCI sources. The results showed that, in ESI, self-decomposition of RDX plays no role in adduct ion formation; rather, RDX clusters with formate, acetate, hydroxyacetate, and chloride anions present in the mobile phase as impurities at ppm levels. In APCI, part of the RDX molecules decompose yielding NO(2) (-) species which in turn cluster with a second RDX molecule producing abundant [M+NO(2)](-) cluster ions.  相似文献   

17.
The evaporation in vacuo of the matrices used and the particle-induced desorption of matrix molecules in fast-atom bombardment (FAB) contribute to a proposed high pressure region above the FAB matrix known as the selvedge region. If the neutral number density is sufficiently high, ions formed upon bombardment may undergo collisions with molecules, yielding matrix-related cluster ions and, in cases when the analyte is desorbed in neutral form, protonated and deprotonated analyte molecules. Similarities with the chemical ionization (CI experiment have been pointed out previously and are further developed here. If FAB is similar to CI, then the response depends on the structures of the reagent ions — those ions that react with gas phase analyte molecules. We consider here the time dependence of positive and negative ion FAB spectra to attempt to identify the reagent ions of FAB. A model is suggested for the FAB ion source which evaluates similarities to a CI source, as well as spatial aspects that are unique to desorption/ionization techniques.  相似文献   

18.
In this paper, the effects of solvent flow, dopant flow, and lamp power on proton transfer ionization in dopant-assisted (DA) atmospheric pressure photoionization (APPI) are investigated. A broad theoretical framework is presented, describing the primary photoionization process, the formation of protonated-solvent cluster ions, and the balance between analyte ion creation via proton transfer and loss via recombination. The principal experimental test system utilized methanol as the solvent, toluene as the dopant, and acridine as the analyte. Comparisons are made between acridine and a less basic compound, 9-methylanthracene (9-MA). Experimental determinations of the trends in the analyte MH+ signal and the total ion current (TIC) with variations in the subject parameters are provided. Experimental results and theory demonstrate that both the analyte signal and the TIC approach asymptotic limits with increases in dopant flow and/or lamp current (two factors which dictate the rate of photoion generation). The data show that these limits are lowered at higher solvent flow rates. These results are attributed to the recombination loss process, the rate of which increases with the second power of ion concentration. We deduce that the recombination rate constant increases with solvent flow rate, a consequence of the growth of ion-solvent clusters. Cluster growth is also believed to be a factor in the dramatic loss of sensitivity for 9-MA that occurs as the solvent flow is raised, because larger protonated-solvent cluster ions have greater solvation energies and may be unreactive with compounds having low gas-phase basicity and/or low solvation energy.  相似文献   

19.
In this work, the fragmentation of peptides under atmospheric pressure photoionization conditions is investigated. Intensive fragmentations into b/y- and c-sequence ions are reported. Abundance of these c-ions appeared to be related to the quantity of dopant infused and to the disappearance of the doubly protonated peptide ion. A careful analysis of the role of the dopant indicates that the fragmentations are not dependent on the nature of the dopant but on their ionization efficiencies. This result shows that the fragmentation arises from the reaction of the protonated peptide with photoelectrons released upon ionization of the dopant in an electron capture dissociation/electron transfer dissociation (ECD/ETD) type mechanism. Experiments with peptides bearing a single proton indicate that additional mechanisms are involved. H-atom transfer reactions are suggested to be responsible for the fragmentations as well. Those atoms could arise either from the dopant ions or from negatively charged solvent nanodroplets. This is the first report of an ECD/ETD mechanism in a dense medium and at atmospheric pressure.  相似文献   

20.
Detailed studies have been made using different source gases and solvents in a Micromass Quattro mass spectrometer under positive ion atmospheric pressure chemical ionization conditions. The major background ions from nitrogen, air, or carbon dioxide were investigated by tandem mass spectrometry, followed by similar studies on solvents commonly employed in normal- and reversed-phase high-performance liquid chromatography, namely, water-acetonitrile, acetonitrile, and dichloromethane, with nitrogen, air, or carbon dioxide; hydrocarbon solvents were studied using nitrogen. Spectra were interpreted in terms of the gases, solvents, and their impurities. The acetonitrile spectra provided clear evidence for both charge exchange and proton transfer, the former being facilitated by the introduction of some air into a flow of nitrogen. Radical cations of acetonitrile dimers, trimers, and tetramers were observed, as were protonated dimer and trimer species. Examination of the analytical response of four polycyclic aromatic hydrocarbons in various hydrocarbon solvents, with nitrogen gas, showed that the sensitivity of detection for an analyte and its ionization mechanism are dependent on both the analyte structure and the solvent, with pyrene showing the highest sensitivity, phenanthrene and fluorene being intermediate, and naphthalene having the lowest sensitivity. The degree of protonation followed the same trend. Signal intensity and degree of protonation were dependent on the alkane solvent used, with isooctane providing the best overall sensitivity for the sum of protonated molecules and molecular ions. The ions observed in these studies appeared to be the most stable ions formed under equilibrium conditions in the source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号