首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination of two chromatographic and one enzymatic methods was used for identification of the molecular species of triacylglycerols (TAGs) from Streptomyces avermitilis. Streptomyces avermitliswas cultured on various carbon sources and the ratio of iso- (i-FAs), anteiso- (ai-FAs), and straight-chain- (n-FAs) fatty acids was modified by precursor-directed biosynthesis. Saturated TAGs were separated from other lipids (including TAGs containing unsaturated FAs) using Ag+ ion cartridges. Analysis of TAGs wereperformed by RP-HPLC/ESI+ tandem mass spectrometry. Both the synthetically prepared sn-TAGs and the natural mixture of TAGmolecular species of wereseparated and identified by tandem MS. The structures of synthetic TAGs werefurther confirmed by pancreatic lipase, which cleaves sn-TAGs into sn-2-monoacylglycerols. The retention times (tR) of the individual regioisomers and enantiomers were found to be depend on the structure of the TAGs. If one branched acyl (iso or anteiso) is present in the TAG molecule, then the elution order is enantiomer (n/n/br), opposite enantiomer (br/n/n), regioisomer (n/br/n). In the case where two branched acyls are in the TAG molecule, the order of the elution is different, that is, br/n/br, n/br/br, br/br/n. In all cases, it was further demonstrated that tandem MS of either synthetically prepared TAGs or TAGs obtained from natural material, that is, n-16:0/ai-15:0/n-16:0 and i-16:0/n-15:0/i-16:0 are identical. Unfortunately, it is not possible to distinguish by ESI+ tandem MS such TAGs, which differ only in the branching of the acyls. The results of our analyses of TAGs are in good agreement with previously published data in other streptomycetes.  相似文献   

2.
The analysis of the triacylglycerol (TAG) composition of oils is a very challenging task, since the TAGs have very similar physico-chemical properties. In this work, a high temperature-gas chromatographic method coupled to electron ionization-mass spectrometry (HT-GC/EI-MS), in the Selected Ion Monitoring (SIM) mode, method was developed for the analysis of TAGs in the olive oil; this is a method suitable for routine analysis. This method was developed using commercially available standard TAGs. The TAGs studied were separated according to their equivalent carbon number and degree of unsaturation. The peak assignment was carried out by locating the characteristic fragment ions having the same retention time on the SIM profile such as [RCO+74]+ and [RCO+128]+ ions, due to the fatty acyl residues on sn-1, sn-2 and sn-3 positions of the TAG molecule and the [M−OCOR]+ ions corresponding to the acyl ions. The developed method was very useful to eliminate the interferences that appeared in the mass spectrum since electron ionization can prevent satisfactory interpretation of spectra.  相似文献   

3.
Current lipidomics approaches require simple and rapid algorithms enabling the interpretation of mass spectra of lipids. Most lipids are complex mixtures of related components in which the composition of the aliphatic fatty acid chains varies from one molecule to the next. Triacylglycerols (TAGs) are an example of such a lipid class. Fatty acid chains are the only parts of the molecule to change from one species to another. Fatty acids, and consequently also TAGs, can be characterized by two parameters; the number of carbon atoms and the number of double bonds. All calculations reflecting relations among ions in the spectra can be easily made using these parameters. An algorithm for the automated interpretation of TAGs from atmospheric pressure chemical ionization mass spectra (TriglyAPCI) is presented in this paper. The algorithm first identifies diacylglycerol fragments and molecular adducts. In the next step, relations among the ions are searched and possible TAG structures are suggested. Individual features of the algorithm are described in detail and the software performance is demonstrated for the liquid chromatography/mass spectrometric (LC/MS) analysis of TAGs isolated from the termite Prorhinotermes canalifrons.  相似文献   

4.
Although marine oysters contain abundant amounts of ether-linked aminophospholipids, the structural identification of the various molecular species has not been reported. We developed a normal-phase silica liquid chromatography/negative-ion electrospray ionization/quadrupole multiple-stage linear ion-trap mass spectrometric (NPLC-NI-ESI/Q-TRAP-MS3) method for the structural elucidation of ether molecular species of serine and ethanolamine phospholipids from marine oysters. The major advantages of the approach are (i) to avoid incorrect selection of isobaric precursor ions derived from different phospholipid classes in a lipid mixture, and to generate informative and clear MSn product ion mass spectra of the species for the identification of the sn-1 plasmanyl or plasmenyl linkages, and (ii) to increase precursor ion intensities by “concentrating” lipid molecules of each phospholipid class for further structural determination of minor molecular species. Employing a combination of NPLC-NI-ESI/MS3 and NPLC-NI-ESI/MS2, we elucidated, for the first time, the chemical structures of docosahexaenoyl and eicosapentaenoyl plasmenyl phosphatidylserine (PS) species and differentiated up to six isobaric species of diacyl/alkylacyl/alkenylacyl phosphatidylethanolamine (PE) in the US pacific oysters. The presence of a high content of both omega-3 plasmenyl PS/plasmenyl PE species and multiple isobaric molecular species isomers is the noteworthy characteristic of the marine oyster. The simple and robust NPLC-NI-ESI/MSn-based methodology should be particularly valuable in the detailed characterization of marine lipid dietary supplements with respect to omega-3 aminophospholipids.  相似文献   

5.
Carboxylate anions arising from collision-induced dissociation (CID) of the [M - 15]- ion produced by fast atom bombardment (FAB) of glycerophosphocholine (GPCho) were previously shown to be produced in an abundance ratio of 1:3 for the carboxylic acids esterified at sn - 1 and sn - 2, respectively. This observation has been confirmed in a series of 13 synthetic GPCho molecular species. A good correlation was found between the isomeric purity of GPCho molecular species as determined by negative-ion FAB/CID analysis and the isomeric purity of the sn - 2 fatty acid using a phospholipase A2 assay. Negative-ion FAB mass spectra of several 1-0-alkyl-2-acyl-GPCho molecular species were found to be similar to those of diacyl GPCho. However, the cm spectra from the major high-mass ions are different from those of the diacyl species in that the [M - 15]- ion yields only one carboxylate anion and the [M - 86]- undergoes a neutral loss of the sn - 2 carboxylic acid as a major decomposition product. These results suggest several rules useful for structural characterization of GPCho molecular species by negative-ion tandem mass spectrometry (MS/MS): (1) For diacyl species, the mass of the two carboxyl anions plus the mass of the GPeho backbone (minus a methyl group) must correspond to the mass of the [M - 15] anion; (2) for diacyl species there is a carboxylate anion ratio approximately 1:3 for the substituents at sn - 1 and sn - 2; and (3) for alkylether species, only one fatty acyl group is present, and the difference between the [M - 15] ion and the GPCho backbone (minus methyl) plus the fatty acyl group at sn - 2 corresponds to an alkylether substituent. (4) Assignment of ether-linked molecular species can be made from the [M - 86]- ion, which has a strong neutral loss of the sn - 2 fatty acid. Analysis of GPCho isolated from human neutrophils by total lipid extraction and normal-phase HPLC was carried out by negative-ion FABand MS/MS. The major arachidonate-eontaining molecular species, which comprise only 5% of total GPCho, were identified by using precursor ion scans for the arachidonate anion, m/ z 303. Decomposition of identified. precursor ions permitted the assignment of those molecular species of GPCho that contain arachidonate at sn - 2 and identification of the substituent at the sn - 1 position. These results were compared to previously identified molecular species from human neutrophils. Several minor arachidonate-containing molecular species were tentatively identified.  相似文献   

6.
A detailed characterization of triacylglycerols (TAGs) present in linseed oil samples from a local producer was performed using electrospray ionization and two mass spectrometric approaches; direct infusion multi‐stage mass spectrometry (MSn) experiments and liquid chromatography/tandem mass spectrometry (LC/MS/MS) using non‐aqueous reversed‐phase chromatographic conditions. The combination of both approaches permitted the identification of 26 TAGs. Comparison of the two analytical approaches showed that discrimination of regioisomers was achieved from MS3 data while other isobaric species were separated and identified by LC/MS/MS analysis. The results we obtained were also compared with those previously reported. The TAG composition of the studied linseed oil is qualitatively identical to that of linseed oils from various sources in Europe, Canada, Argentina or India. However, a few differences were observed with regard to the proportions of some TAGs; these can be explained by variations in the culture conditions, climate, and variety of the seeds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In the present research, we have established a new lipidomics approach for the comprehensive and precise identification of molecular species in a crude lipid mixture using a LTQ Orbitrap mass spectrometer (MS) and reverse-phase liquid chromatography (RPLC) combination with our newly developed lipid search engine “Lipid Search”. LTQ Orbitrap provides high mass accuracy MS spectra by Fourier-transform (FT) mass spectrometer mode and can perform rapid MSn by ion trap (IT) mass spectrometer mode. In this study, the negative ion mode was selected to detect fragment ions from phospholipids, such as fatty acid anions, by MS2 or MS3. We selected the specific detection approach by neutral loss survey-dependent MS3, for the identification of molecular species of phosphatidylcholine, sphingomyelin and phosphatidylserine. Identification of molecular species was performed by using both the high mass accuracy of the mass spectrometric data obtained from FT mode and structural data obtained from fragments in IT mode. Some alkylacyl and alkenylacyl species have the same m/z value as molecular-related ions and fragment ions, thus, direct acid hydrolysis analysis was performed to identify alkylacyl and alkenylacyl species, and then the RPLC–LTQ Orbitrap method was applied. As a result, 290 species from mouse liver and 248 species from mouse brain were identified within six different classes of phospholipid, only those in manually detected and confirmed. Most of all manually detected mass peaks were also automatically detected by “Lipid Search”. Adding to differences in molecular species in different classes of phospholipids, many characteristic differences in molecular species were detected in mouse liver and brain. More variable number of saturated and monounsaturated fatty acid-containing molecular species were detected in mouse brain than liver.  相似文献   

8.
Simple procedures are described for the covalent binding of phospholipids to silicon, platinum, indium/tin oxide and gold surfaces. The protocol for the first three surfaces consists of silanization with γ-amino propyltriethoxysilane, followed by reaction of the amino function with a derivative of a long-chain aliphatic dicarboxylic acid used as a cross-linker and treatment with a lyso-lipid. The seposition of a lipid on gold emplys the reactivity of a sulphur substituent at the terminus on one of the acyl chains of the lipid. Surface coverages ranging from 60 to 75% are obtained as deduced from elemtnal determinations and N(1s)-to-P(2p binding energy peak ratios obtained in x-ray photoelectron spectroscopic study of the immobilized species. Functional group determinations were done through a high-resolutions of the C(1s peaks together with comparison of spectra from intermediate surface structures. Depth profiling of the lipid-bound silicon surface through argon ion etching indicated a model involving the orientation of the sn-2 chain perpendicular to the surface plane. The molecular structure of the immobilized lipid on silicon is established by positive and negative time-of-flight secondary-ion mass spectrometry.  相似文献   

9.
We have conducted thermal and X-ray diffraction experiments on binary mixtures of symmetric stearic-oleic mixed-acid triacylglycerol (TAG) (1,3-distearoyl-2-oleoyl-glycerol: SOS) and asymmetric stearic-oleic mixed-acid TAG (1,2-dioleoyl-3-stearoyl-sn-glycerol: OOS), in which optically active sn-OOS was employed. We found that SOS–OOS mixtures exhibited immiscible monotectic or peritectic mixing behavior. This result was consistent with previous study on binary mixtures of 1,3-dipalmitoyl-2-oleoyl-glycerol (POP) and 1,2-dioleoyl-3-palmitoyl-rac-glycerol (OOP), in which racemic rac-OOP molecules were employed. The differences between the SOS–OOS and POP–OOP mixtures were in the polymorphic behavior of the fractions of POP and SOS. No effect was found from using an optically active (sn-OOS) or racemic mixture (rac-OOP) as an asymmetric oleic–oleic-saturated acid TAG. From the two results, we may conclude that an immiscible phase was formed in the binary mixtures of symmetric saturated-oleic-saturated TAGs and asymmetric oleic–oleic-saturated TAGs, of both racemic and optically active types. This result stands in contrast to mixtures of SOS–OSO (1,3-dioleoyl-2-stearoyl-glycerol), SOS–SSO (1,2-distearoyl-3-oleoyl-rac-glycerol), POP–OPO (1,3-dioleoyl-2-palmitoyl-glycerol), and POP–PPO (1,2-dipalmitoyl-3-oleoyl-rac-glycerol), all of which exhibited molecular-compound-forming behavior with molecular compound crystals at an equal ratio of the binary mixtures. Molecular-level mechanisms to explain this difference are discussed, based on possible roles of glycerol groups acting during the mixing processes of saturated–unsaturated mixed-acid TAGs.  相似文献   

10.
LC with atmospheric pressure chemical ionization (ACPI) MS with RP and chiral phase was used for separation of triacylglycerols (TAGs) from yeasts of the genera Candida, Kluyveromyces, Rhodotorula, Saccharomyces, Torulospora, Trichosporon, and Yarrowia. Chiral LC–APCI‐MS is based on using two columns in series packed with a 3,5‐dimethylphenyl carbamate modified β‐cyclodextrin chiral phase. All regioisomers and enantiomers of TAGs containing one to five double bonds were separated. Molecular species of TAGs, i.e. regioisomers and enantiomers, were identified and quantified by MS/MS. Among the 94 identified TAGs, the most abundant were triolein, oleopalmitoleoolein, and dipalmitoleoolein. In strains producing palmitoleic acid in amounts >25% of total fatty acids (FAs), this acid, or unsaturated FA is bound in sn‐1. In strains containing palmitoleic acid at 10–25% total FAs this acid is mainly bound in sn‐3, saturated FA being bound in sn‐1. Strains containing <10% palmitoleic acid form preferentially symmetrical TAGs.  相似文献   

11.
The cell wall of the pathogenic bacterium Streptococcus pneumoniae contains glucopyranosyl diacylglycerol (GlcDAG) and galactoglucopyranosyldiacylglycerol (GalGlcDAG). The specific GlcDAG consisting of vaccenic acid substituent at sn‐2 was recently identified as another glycolipid antigen family recognized by invariant natural killer T‐cells. Here, we describe a linear ion‐trap multiple‐stage (MSn) mass spectrometric approach towards structural analysis of GalGlcDAG and GlcDAG. Structural information derived from MSn (n = 2, 3) on the [M + Li]+ adduct ions desorbed by electrospray ionization affords identification of the fatty acid substituents, assignment of the fatty acyl groups on the glycerol backbone, as well as the location of double bond along the fatty acyl chain. The identification of the fatty acyl groups and determination of their regio‐specificity were confirmed by MSn (n = 2, 3) on the [M + NH4]+ ions. We establish the structures of GalGlcDAG and GlcDAG isolated from S. pneumoniae, in which the major species consists of a 16:1‐ or 18:1‐fatty acid substituent mainly at sn‐2, and the double bond of the fatty acid is located at ω‐7 (n‐7). More than one isomers were found for each mass in the family. This mass spectrometric approach provides a simple method to achieve structure identification of this important lipid family that would be very difficult to define using the traditional method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The kinetic method was applied to differentiate and quantify mixtures of regioisomeric triacylglycerols (TAGs) by generating and mass selecting alkali ion bound metal dimeric clusters with a TAG chosen as reference (ref) and examining their competitive dissociations in a quadrupole ion trap mass spectrometer. This methodology readily distinguished pairs of regioisomers (AAB/ABA) such as LLO/LOL, OOP/OPO and SSP/SPS and consequently distinguished sn-1/sn-3, sn-2 substituents on the glycerol backbone. The dimeric complex ions [ref, Li, TAG(AAB and/or ABA)]+ generated by electrospray ionization mass spectrometry were subjected to collision induced dissociation causing competitive loss of either the neutral TAG reference (ref) leading to [Li(AAB and/or ABA)]+ or the neutral TAG molecule (TAG(AAB and/or ABA)) leading to [ref, Li]+. The ratio of the two competitive dissociation rates, defined by the product ion branching ratio (Riso), was related via the kinetic method to the regioisomeric composition of the investigated TAG mixture. In this work, a linear correlation was established between composition of the mixture of each TAG regioisomer and the logarithm of the branching ratio for competitive fragmentation. Depending on the availability of at least one TAG regioisomer as standard, the kinetic method and the standard additions method led to the quantitative analysis of natural TAG mixtures.  相似文献   

13.
The photosynthetic glycerolipids composition of algae is crucial for structural and physiological aspects. In this work, a comprehensive characterization of the photosynthetic glycerolipids of the diatom Stephanodiscus sp. was carried out by ultra performance liquid chromatography-electrospray ionization-quadrupole-time of flight mass spectrometry (UPLC-ESI-Q-TOF MS). By use of the MSE data collection mode, the Q-TOF instrument offered a very viable alternative to triple quadrupoles for precursor ion scanning of photosynthetic glycerolipids and had the advantage of high efficiency, selectivity, sensitivity and mass accuracy. Characteristic fragment ions were utilized to identify the structures and acyl compositions of photosynthetic glycerolipids. Comparing the abundance of fragment ions, it was possible to determine the position of the sn-glycerol-bound fatty acyl chains. As a result, four classes of photosynthetic glycerolipid in the extract of Stephanodiscus sp. were unambiguously identified, including 16 monogalactosyldiacylglycerols (MGDGs), 9 digalactosyldiacylglycerols (DGDGs), 23 sulfoquinovosyldiacylglycerols (SQDGs) and 8 phosphatidylglycerols (PGs). As far as our knowledge, this is the first report on global identification of photosynthetic glycerolipids, including lipid classes, fatty acyl composition within lipids and the location of fatty acids in lipids (sn-1 vs. sn-2), in the extract of marine microalgae by UPLC-ESI-Q-TOF MS directly.  相似文献   

14.
A strategy for the characterization of bacterial lipoprotein-in this case Braun’s lipoprotein (an outer membrane 7-ku lipoprotein) isolated from Escherichia coli—is described by time-of-flight mass spectrometric (TOF/MS) techniques [252Cf plasma desorption (PD) TOF/MS and matrix-assisted laser desorption-ionization (MALDI) TOF/MS]. Covalent linkage of lipid at the N-terminal cysteine (posttranslationally modified to a S-[2,3-bis(acyloxy)-propyl]-N-acylcysteine) and, therefore, strict insolubility in aqueous solution constitute common features for this class of proteins. Relative molecular mass determination of the major molecular species of Braun’s lipoprotein was obtained by selection of an appropriate mixture of organic solvents compatible with matrix/support materials useful for the mass spectrometric techniques applied. Minor components of this lipoprotein that differ only in the fatty acid composition of the lipid anchor were detected by PD TOF/MS after enzymatic release of the extremely hydrophobic N-terminal amino acid followed by selective extraction with chloroform. Part of the primary sequence of this lipoprotein was confirmed based on peptide fragment ions observed in the positive ion PD mass spectra of cyanogen bromide-generated peptide fragments that had been isolated previously by reverse phase high-performance liquid chromatography (HPLC). Peptidoglycan fragments that represent the attachment sites of lipoprotein to peptidoglycan were enzymatically released, separated by reverse phase HPLC, and finally characterized by time-of-flight mass spectrometric techniques (252Cf-PD TOF/MS, MALDI TOF/MS). The results obtained with both techniques differed only in the better sensitivity obtained with MALDI TOF/MS, which consumed a factor of 100 to 1000 less material than with PD TOF/MS.  相似文献   

15.
The molecular structures, biosynthetic pathways and physiological functions of membrane lipids produced by organisms in the domain Archaea are poorly characterized as compared with that of counterparts in Bacteria and Eukaryota. Here we report on the use of high‐resolution shotgun lipidomics to characterize, for the first time, the lipid complement of the archaeon Sulfolobus islandicus. To support the identification of lipids in S. islandicus, we first compiled a database of ether lipid species previously ascribed to Archaea. Next, we analyzed the lipid complement of S. islandicus by high‐resolution Fourier transform mass spectrometry using an ion trap‐orbitrap mass spectrometer. This analysis identified five clusters of molecular ions that matched ether lipids in the database with sub‐ppm mass accuracy. To structurally characterize and validate the identities of the potential lipid species, we performed structural analysis using multistage activation on the ion trap‐orbitrap instrument as well as tandem mass analysis using a quadrupole time‐of‐flight machine. Our analysis identified four ether lipid species previously reported in Archaea, and one ether lipid species that had not been described before. This uncharacterized lipid species features two head group structures composed of a trisaccharide residue carrying an uncommon sulfono group (?SO3) and an inositol phosphate group. Both head groups are linked to a glycerol dialkyl glycerol tetraether core structure having isoprenoid chains with a total of 80 carbon atoms and 4 cyclopentane moieties. The shotgun lipidomics approach deployed here defines a novel workflow for exploratory lipid profiling of Archaea. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The structures of archaeal glycerophospholipids and glycolipids are unique in that they consist of phytanyl substituents ether linked to the glycerol backbone, imparting stability to the molecules. In this contribution, we described multiple-stage linear ion-trap combined with high resolution mass spectrometry toward structural characterization of this lipid family desorbed as lithiated adduct ions or as the [M−H] and [M−2H]2− ions by ESI. MSn on various forms of the lithiated adduct ions yielded rich structurally informative ions leading to complete structure identification of this lipid family, including the location of the methyl branches of the phytanyl chain. By contrast, structural information deriving from MSn on the [M−H] and [M−2H]2− ions is not complete. The fragmentation pathways in an ion-trap, including unusual internal loss of glycerol moiety and internal loss of hexose found for this lipid family were proposed. This mass spectrometric approach provides a simple tool to facilitate confident characterization of this unique lipid family.  相似文献   

17.
Diglycerides play a central role in lipid metabolism and signaling in mammalian cells. Although diacylglycerol molecular species comprise the majority of cellular diglycerides that are commonly measured using a variety of approaches, identification of extremely low abundance vinyl ether diglycerides has remained challenging. In this work, representative molecular species from the three diglyceride subclasses (diacyl, vinyl ether, and alkyl ether diglycerides; hereafter referred to as diradylglycerols) were interrogated by mass spectrometric analysis. Product ion mass spectra of the synthesized diradylglycerols with varied chain lengths and degrees of unsaturation demonstrated diagnostic fragmentation patterns indicative of each subclass. Multidimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) analysis of mouse brain and heart lipid extracts were performed using the identified informative signature product ions. Through an array of tandem mass spectrometric analyses utilizing the orthogonal characteristics of neutral loss scanning and precursor ion scanning, the differential fragmentation of each subclass was exploited for high-yield structural analyses. Although molecular ion mass spectra readily identified diacylglycerol molecular species directly from the hexane fractions of tissue extracts enriched in nonpolar lipids, molecular ion peaks corresponding to ether-linked diglycerides were not observable. The power of MDMS-SL utilizing the tandem mass spectrometric array analysis was demonstrated by identification and profiling of individual molecular species of vinyl ether diglycerides in mouse brain and heart from their undetectable molecular ion peaks during MS1 analysis. Collectively, this technology enabled the identification and profiling of previously inaccessible vinyl ether diglyceride molecular species in mammalian tissues directly from extracts of biologic tissues.
Graphical Abstract ?
  相似文献   

18.
Plant sterols, also referred as phytosterols, have been known as bioactive compounds which have cholesterol-lowering properties in human blood. It has been established that a diet rich in plant sterols or their esters alleviates cardiovascular diseases (CVD), and also may inhibit breast, colon and lung carcinogenesis. Phytosterols, in their free and esterified forms, are prone to thermo-oxidative degradation, where time and temperature affect the level of degradation. Looking for new derivatives of phytosterols with high thermo-oxidative stability for application in foods, our idea was to obtain novel structured acylglycerols in which two fatty acid parts are replaced by stigmasterol residues. In this work, asymmetric (1,2- and 2,3-) distigmasterol-modified acylglycerols (dStigMAs) were synthesized by the covalent attachment of stigmasterol residues to sn-1 and sn-2 or sn-2 and sn-3 positions of 3-palmitoyl-sn-glycerol or 1-oleoyl-sn-glycerol, respectively, using a succinate or carbonate linker. The chemical structures of the synthesized compounds were identified by NMR, HR-MS, and IR data. Moreover, the cytotoxicity of the obtained compounds was determined. The dStigMAs possessing a carbonate linker showed potent cytotoxicity to cells isolated from the small intestine and colon epithelium and liver, whereas the opposite results were obtained for compounds containing a succinate linker.  相似文献   

19.
A high resolution approach to silver ion HPLC was studied for the separation of positional isomers of triacylglycerols (TAGs) containing long chain polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and docosapentaenoic acid (DPA) in enzymatically synthesized structured TAGs. Isopropanol was used as a novel modifier in a hexane-acetonitrile based mobile phase for silver ion HPLC. Peak identification was based on HPLC-mass spectroscopy and selectivities of lipases. Positional isomers of TAGs containing one molecule of EPA, DHA, or DPA with saturated fatty acids (FAs) such as caprylic acid and palmitic acid were separated within 13 min using a gradient of hexane-isopropanol-acetonitrile as mobile phase. TAGs containing two or more EPA, DHA, or DPA were also separated from each other within 25 min, but their positional isomers were unresolved. The retention characteristics of the TAG were found to be related to the number of carbon atoms in the FAs present in addition to the number of double bonds and their isomeric configuration. One isomer with an unsaturated FA in the sn-2 position eluted faster than the other with the unsaturated FA in the sn-1 or 3 position. Species with longer chain FAs attached to TAGs with the same degree of unsaturation eluted faster than those that have shorter chain FAs. For example, docosapentaenoylhexadecanoyloctanoin (DPA/C16/C8) was eluted faster than dioctanoyldocosapentaenoin (DPA/C8/C8).  相似文献   

20.
A novel method was developed for the analysis of molecular species in neutral lipid classes, using separation by normal phase high-performance liquid chromatography, followed by detection by evaporative light-scattering and electrospray ionization tandem mass spectrometry. Monoacid standards, i.e. sterol esters, triacylglycerols, fatty acids, diacylglycerols, free sterols and monoacylglycerols, were separated to baseline on microbore 3 μm-silica gel columns. Complete or partial separation of molecular species in each lipid class permitted identification by automatic tandem mass spectrometry of ammonium adducts, produced via positive electrospray ionization. After optimization of the method, separation and identification of molecular species of various lipid classes was comprehensively tested by analysis of neutral lipids from the free lipid extract of maize flour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号