首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work we evaluate the influence of thermal desorber temperature on the analytical response of a swipe-based thermal desorption ion mobility spectrometer (IMS) for detection of trace explosives. IMS response for several common high explosives ranging from 0.1 ng to 100 ng was measured over a thermal desorber temperature range from 60 °C to 280 °C. Most of the explosives examined demonstrated a well-defined maximum IMS signal response at a temperature slightly below the melting point. Optimal temperatures, giving the highest IMS peak intensity, were 80 °C for trinitrotoluene (TNT), 100 °C for pentaerythritol tetranitrate (PETN), 160 °C for cyclotrimethylenetrinitramine (RDX) and 200 °C for cyclotetramethylenetetranitramine (HMX). By modifying the desorber temperature, we were able to increase cumulative IMS signal by a factor of 5 for TNT and HMX, and by a factor of 10 for RDX and PETN. Similar signal enhancements were observed for the same compounds formulated as plastic-bonded explosives (Composition 4 (C-4), Detasheet, and Semtex). In addition, mixtures of the explosives exhibited similar enhancements in analyte peak intensities. The increases in sensitivity were obtained at the expense of increased analysis times of up to 20 seconds. A slow sample heating rate as well as slower vapor-phase analyte introduction rate caused by low-temperature desorption enhanced the analytical sensitivity of individual explosives, plastic-bonded explosives, and explosives mixtures by IMS. Several possible mechanisms that can affect IMS signal response were investigated such as thermal degradation of the analytes, ionization efficiency, competitive ionization from background, and aerosol emission.  相似文献   

2.
We have designed and constructed an atmospheric pressure laser desorption/chemical ionization (AP-LD/CI) source that utilizes a laser pulse to desorb intact neutral molecules, followed by chemical ionization via reagent ions produced by a corona discharge. This source employs a heated capillary atmospheric pressure inlet coupled to a quadrupole ion trap mass spectrometer and allows sampling under normal ambient air conditions. Preliminary results demonstrate that this technique provides approximately 150-fold increase in analyte ions compared to the ion population generated by atmospheric pressure infrared matrix-assisted laser desorption/ionization (AP-IR-MALDI).  相似文献   

3.
Staymates ME  Smith WJ  Windsor E 《The Analyst》2011,136(19):3967-3972
Swipe-based explosive trace detectors rely on thermal desorption to vaporize explosive particles collected on a swipe. The vaporized material is carried by air flows from the desorption unit to the inlet of the chemical analyzer, typically an ion mobility spectrometer. We have observed that the amount of explosives detected from a swipe varies with the physical location of explosives collected on the swipe. There are two issues that may contribute to this effect: inhomogeneous or insufficient heating of the swipe during desorption and low velocity air flows that inefficiently transport desorbed vapor during the instruments analysis time. To better characterize this effect, we have simulated the air movements within a generic desorption unit using commercially available computational fluid dynamics software. Simulations are three dimensional, symmetric and solved under steady, laminar flow conditions. The calculated velocity field correlates directly with experimental detector response to the high explosive RDX. Results suggest that the limiting factor in this model thermal desorption unit is the flow-field around the swipe and flow rate into the detector, rather than heat transfer to the swipe itself. Buoyancy effects due to heating dominate the flow-field and produce a vertical bulk fluid motion within the domain that opposes much of the flow drawn into the analyzer.  相似文献   

4.
A novel sample introduction and ionization method for trace explosives detection is proposed and investigated herein, taking into consideration real-world application requirements. A thermal desorption sampling method and dielectric barrier discharge ionization (DBDI) source, with air as the discharge gas, were developed. The counter flow method was adopted firstly into the DBDI source to remove the interference of ozone and other reactive nitrogen oxides. A separated reaction region with an ion guiding electric field was developed for ionization of the sample molecules. Coupled with a homemade miniature digital linear ion trap mass spectrometer, this compact and robust design, with further optimization, has the advantages of soft ionization, a low detection limit, is free of reagent and consumable gas, and is an easy sample introduction. A range of common nitro-based explosives including TNT, 2,4-DNT, NG, RDX, PETN, and HMX has been studied. A linear response in the range of two orders of magnitude with a limit of detection (LOD) of 0.01 ng for TNT has been demonstrated. Application to the detection of real explosives and simulated mixed samples has also been explored. The work paves the path to developing next generation mass spectrometry (MS) based explosive trace detectors (ETDs).  相似文献   

5.
A method for the detection of nitroaromatic and nitramine explosives from a PTFE wipe has been developed using thermal desorption andgas chromatography with electron-capture detection (TD-GC-ECD). For method development a standard mixture containing eight nitroaromatic and two nitramine (HMX and RDX) explosive compounds was spiked onto a PTFE wipe. Explosives were desorbed from the wipe in a commercial thermal desorption system and trapped onto a cooled injection system, which was incorporated into the injection port of the GC. A dual column, dual ECD configuration was adopted to enable simultaneous confirmation analysis of the explosives desorbed. For the desorption of 50 ng of each explosive, desorption efficiencies ranged between 80.0 and 117%, for both columns. Linearity over the range 2.5-50 ng was demonstrated for each explosive on both columns with r2 values ranging from 0.979 to 0.991 and limits of detection less than 4 ng. Desorption of HMX from a PTFE wipe has also been demonstrated for the first time, albeit at relatively high loadings (100 ng).  相似文献   

6.
The application of resonance-enhanced multiphoton ionization (REMPI) spectroscopy for the ultrasensitive detection of molecules originating from laser desorption experiments performed on a variety of substrates is reviewed. Laser-induced desorption from surfaces is capable of producing intact gas-phase molecules, even from polar, non-volatile, high-molecular-weight and thermally labile substances. REMPI is a highly efficient and optically selective ionization method, which, coupled with laser desorption allows the direct chemical analysis of complex mixtures, without the need for previous sample purification and separation steps. The use of REMPI spectroscopy is discussed in two contexts: (1) for the direct chemical analysis of complex mixtures, e.g., environmental samples, by laser desorption/laser postionization mass spectrometry and (2) for measurements of internal state distribution of molecules laser-desorbed from sub-monolayers surface films to gain insight into the laser desorption mechanism.Presented at the 13th International Symposium on Microchemical Techniques (ISM), held in Montreux, Switzerland, May 16–20,1994  相似文献   

7.
Summary A general surface analysis method has been developed based on non-selective photoionization of sputtered or desorbed neutral atoms and molecules above the surface, followed by time-of-flight mass spectrometry. The approach, currently utilizes two main types of ionizing radiation and a variety of desorption probes. For photoionization, coherent untuned sources are used; an intense focused pulsed UV laser beam is used for non-resonant multiphoton ionization to give elemental and limited chemical information, usually used for inorganic analysis; a coherent VUV source is used for single-photon ionization at 118 nm (10.5 eV) produced by frequency tripling of 355 nm light from a Nd:YAG laser. This paper focuses on single-photon ionization for inorganic systems. The desorption probes used are ion, electron, and laser beams as well as thermal desorption. For depth profiling, ion beams are specifically used. Any focused desorption probe beam can provide lateral spatial resolution.  相似文献   

8.
Matrix assisted laser desorption/ionization (MALDI) is studied at atmospheric pressure using liquid sampling methods. A time-of-flight mass spectrometer couples to an open sample stage accessed by a UV laser for desorption and ionization. Also coupled to the sampling state is a corona discharge for auxiliary ionization of desorbed neutral molecules. The interaction of the laser desorption and corona ionization is studied for a range of desorption conditions, showing enhanced analyte ionization, but the effect is analytically advantageous only at low desorption rates. The effect of corona discharge voltage was also explored. The decoupling of neutral molecule formation and subsequent ionization provides an opportunity to study each process separately.  相似文献   

9.
A review of standoff detection technologies for explosives has been made. The review is focused on trace detection methods (methods aiming to detect traces from handling explosives or the vapours surrounding an explosive charge due to the vapour pressure of the explosive) rather than bulk detection methods (methods aiming to detect the bulk explosive charge). The requirements for standoff detection technologies are discussed. The technologies discussed are mostly laser-based trace detection technologies, such as laser-induced-breakdown spectroscopy, Raman spectroscopy, laser-induced-fluorescence spectroscopy and IR spectroscopy but the bulk detection technologies millimetre wave imaging and terahertz spectroscopy are also discussed as a complement to the laser-based methods. The review includes novel techniques, not yet tested in realistic environments, more mature technologies which have been tested outdoors in realistic environments as well as the most mature millimetre wave imaging technique. Figure Standoff detection and identification is one of the most wanted capabilities  相似文献   

10.
An interface to allow on-line qualitative and quantitative full-plate detection and analysis of compounds separated by thin-layer chromatography (TLC) is presented. A continuous wave diode laser is employed as a desorption source. Atmospheric pressure chemical ionization mass spectrometry ionizes and subsequently identifies the desorbed sample molecules. Besides direct laser desorption on untreated TLC plates, graphite particles were used as a matrix to couple in the laser power and improve the efficiency of desorption.  相似文献   

11.
This study demonstrates the use of solid-phase microextraction (SPME) to extract and pre-concentrate volatile signatures from static air above plastic explosive samples followed by detection using ion mobility spectrometry (IMS) optimized to detect the volatile, non-energetic components rather than the energetic materials. Currently, sample collection for detection by commercial IMS analyzers is conducted through swiping of suspected surfaces for explosive particles and vapor sampling. The first method is not suitable for sampling inside large volume areas, and the latter method is not effective because the low vapor pressure of some explosives such as RDX and PETN make them not readily available in the air for headspace sampling under ambient conditions. For the first time, headspace sampling and detection of Detasheet, Semtex H, and C-4 is reported using SPME-IMS operating under one universal setting with limits of detection ranging from 1.5 to 2.5 ng for the target volatile signatures. The target signature compounds n-butyl acetate and the taggant DMNB are associated with untagged and tagged Detasheet explosives, respectively. Cyclohexanone and DMNB are associated with tagged C-4 explosives. DMNB is associated with tagged Semtex H explosives. Within 10 to 60 s of sampling, the headspace inside a glass vial containing 1 g of explosive, more than 20 ng of the target signatures can be extracted by the SPME fiber followed by IMS detection.  相似文献   

12.
Current commercially available ion mobility spectrometers are intended for the analysis of chemicals in the gas phase. Sample introduction methods, such as direct air sampling, a GC injector or a thermal desorber, are commonly an integral part of these instruments. This paper describes an electrospray ionization ion mobility spectrometer system that allows direct introduction samples in solution phase. This allows direct analysis of non-volatile organic and biological samples, and avoids decomposition of thermally liable samples, providing reliable chemical identification. In addition, the new ion mobility spectrometer allows mobility analysis with high resolving power. Commonly used commercial IMS systems provide resolving powers between 10 and 30; this new ion mobility spectrometer has resolving power greater than 60 for routine analysis. A high resolution instrument is necessary for many applications where a complex mixture needs to be separated and quantified. This paper demonstrates the advantages of using a high resolution ion mobility spectrometer and an electrospray ionization source for the analysis of non-volatile pharmaceuticals as well as dissolved explosive in solution phase.  相似文献   

13.
A time-resolved inverse spatially offset Raman spectrometer was constructed for depth profiling of Raman-active substances under both the lab and the field environments. The system operating principles and performance are discussed along with its advantages relative to traditional continuous wave spatially offset Raman spectrometer. The developed spectrometer uses a combination of space- and time-resolved detection in order to obtain high-quality Raman spectra from substances hidden behind coloured opaque surface layers, such as plastic and garments, with a single measurement. The time-gated spatially offset Raman spectrometer was successfully used to detect concealed explosives and drug precursors under incandescent and fluorescent background light as well as under daylight. The average screening time was 50 s per measurement. The excitation energy requirements were relatively low (20 mW) which makes the probe safe for screening hazardous substances. The unit has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than previous picosecond-based systems, to provide a functional platform for in-line or in-field sensing of chemical substances.  相似文献   

14.
Rapid, direct, and trace detection of explosives in an open environment is of particular need in homeland and/or transportation security. In this work, an aerodynamic assisted thermo desorption mass spectrometry method was developed for the direct quantitative analyses of explosives from a distance. Remote non‐volatile explosive sensing was achieved for 2, 4, 6‐trinitrotoluene, trinitrohexahydro‐1, 3, 5‐triazine, 8701 (main ingredient: RDX 98.5%), and C4 (a type of plastic explosive) with a distance of 0.65 m. Furthermore, a close to 324 cm2 effective sampling area could be achieved, and the limits of detection are in the ng range. This device can be deployed in airports and subway stations for high‐throughput and automatic luggage/personnel screening of prohibited articles, such as explosives and illicit drugs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
An atmospheric pressure proximal probe thermal desorption sampling method coupled with secondary ionization by electrospray or atmospheric pressure chemical ionization was demonstrated for the mass spectrometric analysis of a diverse set of compounds (dyestuffs, pharmaceuticals, explosives and pesticides) separated on various high‐performance thin‐layer chromatography plates. Line scans along or through development lanes on the plates were carried out by moving the plate relative to a stationary heated probe positioned close to or just touching the stationary phase surface. Vapors of the compounds thermally desorbed from the surface were drawn into the ionization region of a combined electrospray ionization/atmospheric pressure chemical ionization source where they merged with reagent ions and/or charged droplets from a corona discharge or an electrospray emitter and were ionized. The ionized components were then drawn through the atmospheric pressure sampling orifice into the vacuum region of a triple quadrupole mass spectrometer and detected using full scan, single ion monitoring, or selected reaction monitoring mode. Studies of variable parameters and performance metrics including the proximal probe temperature, gas flow rate into the ionization region, surface scan speed, read‐out resolution, detection limits, and surface type are discussed. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

16.
A two‐step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI‐ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm) is directed to a target inside a chamber evacuated to ~15 Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148 nm). The resulting ions are stored and detected in a three‐dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ≥ 0.004 Pa. The limit of detection for desorbed coronene molecules is 1.5 pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157 nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25‐octabutoxy‐29H,31H‐phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Daniel JM  Ehala S  Friess SD  Zenobi R 《The Analyst》2004,129(7):574-578
A new technique is presented for the coupling of atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) mass spectrometry with liquid delivery systems. Mass measurements of polymers and peptides are demonstrated using a co-dissolved matrix, e.g. alpha-cyano-4-hydroxycinnamic acid (HCCA). Improvements in terms of sensitivity are achieved by optimizing the shape und control of the exit capillary and by using a laser (355 nm) at a 1 kHz repetition rate. Two calibration experiments promise a good applicability of the presented coupling method for quantitative measurements. The limit of detection achieved so far is 500 nM for peptides in methanol solution containing 25 mM HCCA.  相似文献   

18.
A new liquid chromatography/mass spectrometry interface, the laser spray, has been developed. Explosive vaporization and mist formation occur when an aqueous solution effusing out from the tip of the stainless-steel capillary is irradiated from the opposite side of the capillary by a 10.6 microm infrared laser. Weak ion signals could be detected when the plume was sampled through the ion sampling orifice. When a high voltage (3-4 kV) was applied to the stainless-steel capillary, strong ion signals appeared. The ion abundances were found to be orders of magnitude greater than those obtained by conventional electrospray ionization in the case of aqueous solutions. The present method is regarded as an electric-field assisted form of matrix-assisted laser desorption/ionization in which the liquid chromatographic solvent (water, etc.) acts as a liquid matrix. Laser spray ionization is expected to become a versatile method for biological mass spectrometry because this method is compatible with the natural solvent, water.  相似文献   

19.
We have employed electrospray laser desorption ionization mass spectrometry (ELDI‐MS) to rapidly characterize certain classes of compounds – the inks within the characters made by inks and inkjet printer on regular paper and the chemical compounds within thermal papers. This ELDI‐MS approach allowed the ink and paper samples to be distinguished in terms of their chemical compositions. Sample pretreatment was unnecessary and the documents were practically undamaged after examination. The ink chemicals on the documents were desorbed through laser irradiation (sampling spot area: <100 µm2); the desorbed molecules then entered an electrospray plume – prepared from an acidic methanol/water solution (50%) – where they became ionized through fusion or ion‐molecule reactions with the charged solvent species and droplets in the plume. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Quantitative solid phase micro-extraction (SPME) coupled with ion mobility spectrometry is demonstrated using the analysis of ephedrine in urine. Since its inception in the 1970's ion mobility spectrometry (IMS) has evolved into a useful technique for laboratories to detect explosives, chemical warfare agents, environment pollutants and, increasingly, for detecting drugs of abuse. Ephedrine is extracted directly from urine samples using SPME and the analyte on the fiber is heated by the IMS desorber unit and vaporized into the drift tube. The analytical procedure was optimized for fiber coating selection, extraction temperature, extraction time, sample pH, and analyte desorption temperature. The carryover effects, ion fragmentation characteristics, peak shapes, and drift times of ephedrine were also evaluated based on the direct interfacing of SPME to IMS. A limit of detection of 50 ng/mL of ephedrine in urine and a linear range of 3 orders of magnitude were obtained, showing that SPME-IMS compares well to other techniques for ephedrine and drug analysis presented in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号