首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Although glycosyl inositol phosphoryl ceramides (GIPCs) represent the most abundant class of sphingolipids in plants, they still remain poorly characterized in terms of structure and biodiversity. More than 50 years after their discovery, little is known about their subcellular distribution and their exact roles in membrane structure and biological functions. This review is focused on extraction and characterization methods of GIPCs occurring in plants and fungi. Global methods for characterizing ceramide moieties of GIPCs revealed the structures of long-chain bases (LCBs) and fatty acids (FAs): LCBs are dominated by tri-hydroxylated molecules such as monounsaturated and saturated phytosphingosine (t18:1 and t18:0, respectively) in plants and mainly phytosphingosine (t18:0 and t20:0) in fungi; FA are generally 14–26 carbon atoms long in plants and 16–26 carbon atoms long in fungi, these chains being often hydroxylated in position 2. Mass spectrometry plays a pivotal role in the assessment of GIPC diversity and the characterization of their structures. Indeed, it allowed to determine that the core structure of GIPC polar heads in plants is Hex(R1)-HexA-IPC, with R1 being a hydroxyl, an amine, or a N-acetylamine group, whereas the core structure in fungi is Man-IPC. Notably, information gained from tandem mass spectrometry spectra was most useful to describe the huge variety of structures encountered in plants and fungi and reveal GIPCs with yet uncharacterized polar head structures, such as hexose–inositol phosphoceramide in Chondracanthus acicularis and (hexuronic acid)4–inositol phosphoceramide and hexose–(hexuronic acid)3–inositol phosphoceramide in Ulva lactuca.
Figure
Example of GIPC with its three building blocks (fatty acid, FA; long chain base, LCB; polar head) where R1 could be a hydroxyl, an amine or a N-acetylamine group  相似文献   

2.
Chronic hepatitis C virus (HCV) infection is a global health issue. Although its progression is reported to be closely associated with lipids, the way in which the plasma lipidome changes during the development of chronic HCV infection in humans is currently unknown. Using an improved quantitative high-throughput lipidomic platform, we profiled 284 lipids in human plasma samples obtained from healthy controls (n?=?11) and patients with chronic HCV infection (n?=?113). The intrahepatic inflammation grade (IG) of liver tissue was determined by biopsy. Two types of mass spectrometers were integrated into a single lipidomic platform with a wide dynamic range. Compared with previous methods, the performance of this method was significantly improved in terms of both the number of target sphingolipids identified and the specificity of the high-resolution mass spectrometer. As a result, 44 sphingolipids, one diacylglycerol, 43 triglycerides, 24 glycerophosphocholines, and 5 glycerophospho-ethanolamines were successfully identified and quantified. The lipid profiles of individuals with chronic HCV infection were significantly different from those of healthy individuals. Several lipids showed significant differences between mild and severe intrahepatic inflammation grades, indicating that they could be utilized as novel noninvasive indicators of intrahepatic IG. Using multivariate analysis, healthy controls could be discriminated from HCV patients based on their plasma lipidome; however, patients with different IGs were not well discriminated. Based on these results, we speculate that variations in lipid composition arise as a result of HCV infection, and are caused by HCV-related digestive system disorders rather than progression of the disease.
Figure
Flowchart of the lipidomic platform  相似文献   

3.
Poly(lactic-co-glycolic acid) particles in the 200–400-nm size range were formulated through nanoprecipitation and solvent evaporation methods. Different concentrations of the polymer and stabilizer (Pluronic® F 68) were tested in order to identify the best conditions for making poly(lactic-co-glycolic acid) particles of suitable size, stable in time, and to be used as carriers for brain-targeting drugs. The particles with the best characteristics for delivery system design were those formulated by nanoprecipitation with an organic/water phase ratio of 2:30, a polymer concentration of 25 mg/mL, and a surfactant concentration of 0.83 mg/mL; their surface charge was reasonably negative (approximately -27 mV) and the average size of the almost monodisperse population was roughly 250 nm. Particle characterization was obtained through ζ-potential measurements, scanning electron microscope observations, and particle size distribution determinations; the latter achieved by both photon-correlation spectroscopy and sedimentation field flow fractionation. Sedimentation field flow fractionation, which is considered more reliable than photon-correlation spectroscopy in describing the possible particle size distribution modifications, was used to investigate the effects of 3 months of storage at 4 °C had on the lyophilized particles.
Figure
Particle size ditribution from the SdFFF and the PCS techniques  相似文献   

4.
A highly sensitive method was developed for the simultaneous determination of ten sulfonamides in pork and chicken samples by monolith-based stir bar sorptive extraction (SBSE) coupled to high-performance liquid chromatography tandem mass spectrometry. The samples were freeze-dried and extracted by acetonitrile, then enriched and further extracted by SBSE which was based on poly(vinylphthalimide-co-N,N-methylenebisacrylamide) monolith (SBSE-VPMB) as coating. To achieve optimum extraction performance of SBSE for sulfonamides, several parameters, including pH value and ionic strength in the sample matrix and extraction and desorption time, were investigated in detail. Under the optimal conditions, the limits of detection (S/N?=?3) for target sulfonamides were 1.2–6.1 ng/kg in pork and 2.0–14.6 ng/kg in chicken, respectively. Real samples spiked at the concentration of 0.5 and 5.0 μg/kg showed recoveries above 55 % and relative standard deviations below 12 %. At the same time, the extraction performances of target sulfonamides on SBSE-VPMB were compared with other SBSE based on porous monolith and commercial SBSE.
Figure
?  相似文献   

5.
Catecholamines play essential roles in several physiological processes in vertebrates as well as in invertebrates. While several studies have shown the presence of these substances in surface water invertebrates, their occurrence in groundwater fauna is unproven. In the present study, the presence of different catecholamines (i.e., noradrenaline, adrenaline, and dopamine) in individual specimens of groundwater amphipods of the genus Niphargus (mostly Niphargus inopinatus) was investigated via two independent analytical methods: HPLC/EcD and UPLC/TOF-MS. Mean values for catecholamine levels were 533 pg mg?1 fresh weight for noradrenaline, 314 pg mg?1 for adrenaline, and 16.4 ng mg?1 for dopamine. The optimized protocol allowed the detection of CAs in single organisms of less than 1 mg fresh weight. Catecholamine concentration patterns in groundwater invertebrates are briefly discussed here with respect to their evolutionary adaptation to an environmentally stable, energy-poor habitat.
Figure
Niphargus inopinatus SCHELLENBERG (photo: Günter Teichmann,Helmholtz Center Munich)  相似文献   

6.
We demonstrate that base mismatches of caspase-3 DNA sequences can be detected by surface plasmon resonance (SPR) following signal amplification by polymerase from Thermus aquaticus (Taq). The concentration of magnesium ions and the respective dNTPs for polymerase binding to the oligonucleotides on the sensing surface were optimized. Taq polymerase binds to double-stranded DNA that is self-assembled on the gold surface of the biosensor to induce an SPR signal. Experiments are presented on the effect of Mg(II) and dNTP concentrations on the activity of the polymerase on the sensing surface. The detection limits are 50 pM, 0.1 nM, 0.7 nM, 7 nM, and 20 nM for correctly matched, single-base mismatched, two-base mismatched, three-base mismatched and four-base mismatched DNA of caspase-3, respectively. This is attributed to the optimized experimental conditions, with samples containing 2 μM of Mg(II) and 0.3 mM of dNTP.
Figure
The process of detecting mismatched caspase-3 DNA oligonucleotides with SPR biosensor  相似文献   

7.
From extraction experiments and $ \gamma $ -activity measurements, the exchange extraction constants corresponding to the general equilibrium M2+(aq) + Sr2+(nb) $ \Leftrightarrow $ M2+(nb) + Sr2+(aq) taking place in the two-phase water–nitrobenzene system (M2+ = Mg2+, Ca2+, Ba2+, Pb2+, Cu2+, Zn2+, Cd2+, $ {\hbox{UO}}_{2}^{2 + } $ , Mn2+, Co2+, Ni2+; 1 = macrocyclic lactam receptor–see Scheme 1; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Moreover, the stability constants of the M2+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following cation order: Mg2+ < Co2+ < Cu2+, Mn2+, Ni2+ < Cd2+ < Ca2+ < Ba2+, Zn2+ < Pb2+ <  $ {\hbox{UO}}_{2}^{2 + } $ .
Scheme 1
Structural formula of 2,18-dichloro-9,10,11,12-tetrahydro-6H, 20H-dibenzo[l,o][1,11,4,8]dioxadiazacyclohexadecine-7,13(8H, 14H)-dione (abbrev. 1)  相似文献   

8.
We have developed a highly sensitive electrochemical immunoassay for the quantitation of zearalenone (ZEN), a mycotoxin produced by Fusarium species. In this enzyme linked immunosorbent assay, the enzymatic conversion of the substrate p-nitrophenylphosphate is detected by a microplate reader and the signal subsequently converted into an electrical signal. The concentrations of coating antigen (ZEN-ovalbumin), of monoclonal antibody, and of goat anti-mouse antibody labeled with alkaline phosphatase were optimized. In terms of electrochemical detection, the types and pH values of the buffers, the conditions for agitating, and scanning frequency were optimized. The effective detection range of this immunoassay is quite wide (0.004 to 9.5 ng?mL?1), and the limit of detection is 2 pg?mL?1. ZEN-free corn, wheat, and grain-based food samples were spiked with ZEN and analyzed by this method, and recoveries were found to range from 91.6 % to 113.0 %. Unlike previously described electrochemical methods, this method is both highly sensitive and has a wide working range. The method is fast and thus provides a platform for high-throughput analysis that meets the current need to monitor trace levels of analytes in grain and grain-based food.
Figure
Scheme of test procedure of electrochemical immunosensor (procedure of immune-reaction: from a to f)  相似文献   

9.
pH-sensitive poly(methacrylic acid)-block-hydroxyl-terminated polybutadiene-block-poly(methacrylic acid) block copolymers were synthesized by atom transfer radical polymerization of t-butyl methacrylate and follow-up acidolysis. The copolymers can spontaneously assemble into stable and nearly spherical micelle aggregates in aqueous solution, with hydrodynamic diameters (D h ) from 51 to 92 nm and critical micelle concentration of 3.90–7.76 mg L?1. Zeta potentials were found to be increased with increasing (monomer)/(initiator) molar ratios. A pH-dependent phase behavior is produced at approximately 5.4–5.6, as determined by D h and I 335/I 332 fluorescence intensity ratios. The in vitro camptothecin (CPT) release was compositional and pH dependent, and the cumulative CPT release below pH 7.2 was higher than that in pH 7.4. They could inhibit the premature burst CPT release. The copolymer micelles were low in cytotoxicity even at a micellar concentration of 800 mg L?1, and therefore they may be used as potential drug-delivery carriers.
Figure
?  相似文献   

10.
We have prepared an ~1.4 μm thin hybrid film from polyurethane (PU) hydrogel and tetraethylorthosilicate (TEOS) by a sol–gel method, and have incorporated the red-luminescent ruthenium-tris-bipyridyl complex. At an optimized ratio of PU/TEOS (1.5:1; w/w) and annealing temperature (60 °C), the membrane sensor exhibits good capability to extract water from organic solvents but also can well retain the ruthenium dye. If contacted with water-containing organic solvents such as acetone or THF, both the luminescence intensity and wavelength change significantly. The response of luminescence intensity to the water fraction in organics is sigmoidal, which can be well fitted with a modified Stern-Volmer equation. The sensor works in the ranges of 0–6 % and 0–12 % (v/v) of water in acetone and THF, respectively, with detection limits of 0.13 % and 0.486 % (v/v).
Figure
A ultrathin Ru(bpy)3 2+-doped hybrid film (~1.4 μm) prepared from PU hydrogel and TEOS shows water-dependent luminescence in both intensity and emission energy when calibrated in organic solvents.  相似文献   

11.
The content of tenuazonic acid in human urine was determined by a stable isotope dilution assay (SIDA) that was recently developed for the analysis of food commodities and extensively re-validated for urine matrix in this study. Linearity of the response curve was proven between molar ratios n(labeled standard)/n(analyte) of 0.02–100. The limits of detection and determination were 0.2 and 0.6 μg/L, respectively. The mean recovery of the stable isotope dilution assay was 102?±?3 % in the range between 1.0 and 100 μg/L. Interassay precision was 6.7 % (relative standard deviation of three triplicate analyses of a human urine sample during 3 weeks). The method was applied to two studies dealing with urinary excretion of tenuazonic acid: In the first study, tenuazonic acid was quantified in the 24-h urine of six volunteers from Germany (three female, three male) in a concentration range of 1.3–17.3 μg/L or 2.3–10.3 ng/mg?1 creatinine, respectively. In the second study, two volunteers (one female, one male) ingested 30 μg tenuazonic acid by consumption of naturally contaminated whole meal sorghum infant cereals and tomato juice, respectively. The urinary excretion of the ingested tenuazonic acid was 54–81 % after 6 h, depending on matrix and volunteer. After 24 h, 87–93 % of the ingested amount of tenuazonic acid was excreted, but the fate of the remaining about 10 % is open. Thus, it is not possible to exclude potential health hazards for the consumer, completely.
Figure
Urinary excretion of tenuazonic acid (TA) by two volunteers (A and B) after ingestion of sorghum infant cereals [1] and tomato juice [2]  相似文献   

12.
Macroporous reversed-phase (mRP) chromatography was successfully used to develop an accurate and precise method for total protein in serum. The limits of detection (0.83 μg, LOD) and quantification (2.51 μg, LOQ) for the mRP method are comparable with those of the widely used micro BCA protein assay. The mRP method can be used to determine the total protein concentration across a wide dynamic range by detecting chromatographic peaks at 215 nm and 280 nm. The method has the added advantage of desalting and denaturing proteins, leading to more complete digestion by trypsin and to better LC–MS–MS identification in shotgun proteomics experiments.
Figure
Simultaneous Serum Desalting and Total Protein Determination with Macroporous Reversed-Phase Chromatography: calibration plots  相似文献   

13.
Direct electrospray ionization mass spectrometry (ESI-MS) assay was used to investigate the stepwise binding of the GM1 pentasaccharide β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Galp-(1→4)-β-D-Glcp (GM1os) to the cholera toxin B subunit homopentamer (CTB5) and to establish conclusively whether GM1os binding is cooperative. Apparent association constants were measured for the stepwise addition of one to five GM1os to CTB5 at pH 6.9 and 22 °C. The intrinsic association constant, which was established from the apparent association constant for the addition of a single GM1os to CTB5, was found to be (3.2 ± 0.2) × 106 M–1. This is in reasonable agreement with the reported value of (6.4 ± 0.3) × 106 M–1, which was measured at pH 7.4 and 25 °C using isothermal titration calorimetry (ITC). Analysis of the apparent association constants provides direct and unambiguous evidence that GM1os binding exhibits small positive cooperativity. Binding was found to be sensitive to the number of ligand-bound nearest neighbor subunits, with the affinities enhanced by a factor of 1.7 and 2.9 when binding occurs next to one or two ligand-bound subunits, respectively. These findings, which provide quantitative support for the binding model proposed by Homans and coworkers [14], highlight the unique strengths of the direct ESI-MS assay for measuring cooperative ligand binding.
Figure
?  相似文献   

14.
This work reported an efficient electrochemical treatment for drinking water disinfection using a pyrolytic graphite electrode modified with ferrocenyl tethered poly(amidoamine) dendrimers–multiwalled carbon nanotubes–chitosan nanocomposite. The influence parameters of electrochemical disinfection of Escherichia coli and Staphylococcus aureus, such as applied potential and sterilization time, were investigated. Further investigation indicated that almost all (99.99 %) of the initial bacteria were killed after applying a low potential of 0.4 V for 10 min. During the electrochemical disinfection process, the oxidized form of ferrocene was formed on electrode, which played a key role in the disinfection towards E. coli and S. aureus. Hence, the proposed method may provide potential application for the disinfection of drinking water.
Figure
Schematic diagram of electrochemical disinfection progress  相似文献   

15.
The growing number of biotech crops with novel genetic elements increasingly complicates the detection of genetically modified organisms (GMOs) in food and feed samples using conventional screening methods. Unauthorized GMOs (UGMOs) in food and feed are currently identified through combining GMO element screening with sequencing the DNA flanking these elements. In this study, a specific and sensitive qPCR assay was developed for vip3A element detection based on the vip3Aa20 coding sequences of the recently marketed MIR162 maize and COT102 cotton. Furthermore, SiteFinding-PCR in combination with Sanger, Illumina or Pacific BioSciences (PacBio) sequencing was performed targeting the flanking DNA of the vip3Aa20 element in MIR162. De novo assembly and Basic Local Alignment Search Tool searches were used to mimic UGMO identification. PacBio data resulted in relatively long contigs in the upstream (1,326 nucleotides (nt); 95 % identity) and downstream (1,135 nt; 92 % identity) regions, whereas Illumina data resulted in two smaller contigs of 858 and 1,038 nt with higher sequence identity (>99 % identity). Both approaches outperformed Sanger sequencing, underlining the potential for next-generation sequencing in UGMO identification.
Figure
?  相似文献   

16.
An isothermal cross-priming amplification (CPA) assay for Agrobacterium tumefaciens nopaline synthase terminator (T-Nos) was established and investigated in this work. A set of six specific primers, recognizing eight distinct regions on the T-Nos sequence, was designed. The CPA assay was performed at a constant temperature, 63 °C, and detected by real-time fluorescence. The results indicated that real-time fluorescent CPA had high specificity, and the limit of detection was 1.06?×?103 copies of rice genomic DNA, which could be detected in 40 min. Comparison of real-time fluorescent CPA and conventional polymerase chain reaction (PCR) was also performed. Results revealed that real-time fluorescent CPA had a comparable sensitivity to conventional real-time PCR and had taken a shorter time. In addition, different contents of genetically modified (GM)-contaminated rice seed powder samples were detected for practical application. The result showed real-time fluorescent CPA could detect 0.5 % GM-contaminated samples at least, and the whole reaction could be finished in 35 min. Real-time fluorescent CPA is sensitive enough to monitor labeling systems and provides an attractive method for the detection of GMO.
Figure
?  相似文献   

17.
We report on a new solid phase for microextraction (SPME) of Methylene Blue (MB). It was obtained by immobilizing carboxy graphene (G-COOH) on a stainless steel wire. Scanning electron micrography showed the surface to be homogeneous, porous and wrinkled. The effects of sample solution pH, extraction time, stirring rate, desorption time and of desorption solvent on the efficiency of extraction of MB were optimized. The new SPME was coupled to electrochemiluminescence detection of MB and gave a linear analytical range from 2.7 nM to 1.3 μM, and the detection limit is 0.89 nM which is better than other methods. When considering the enrichment factor of ~20, the resulting detection limit is estimated to be 45 pM. The new SPME fiber was successfully applied to the analysis of MB in spiked real water samples. Recoveries range from 95.7 % to 113.0 %, and relative standard deviations are <5.0 %, which showed the good reproducibility of the method.
Figure
Scanning electron micrographs of G-COOH fiber coating (A: 10,000× magnification, C: 100× magnification). Laser scanning confocal microscope of G-COOH fiber coating (B, D: a distance of 200 μm)  相似文献   

18.
We report on the detection of trace quantities of melamine (MA) by a colorimetric method that exploits the conformational change of hemin G-quadruplex-DNAzyme. The addition of MA to hemin G-quadruplex-DNAzyme structure containing thymine bases causes the thymine in the DNAzyme to interact with MA via a stable triple H-bond and leads to a conformational change. This, in turn, affects the peroxidase-like activity of hemin which is determined colorimetrically at 450 nm by adding 3,3’,5,5’-tetramethylbenzidine and hydrogen peroxide. The method was applied to the colorimetric determination of MA over a wide range of concentrations (0.2 to 24 μM) with a detection limit of 80 nM. The effect also can be detected with bare eyes. The method was successfully applied to the determination of MA in spiked milk powder.
Figure
A novel, simple and rapid, visual colorimetric method is applied for the detection of melamine with a wide range of 8?×?10?7 M to 1?×?10?3 M and low detection limit of 2.7?×?10?7 M.  相似文献   

19.
In this work, (3,6-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9-(4-vinylbenzyl)-9H-carbazole) (EDOTVBCz) comonomer was chemically synthesized and characterized by Fourier transform infrared (FTIR), proton nuclear magnetic resonance, and carbon nuclear magnetic resonance spectroscopy. EDOTVBCz was electrocoated on glassy carbon electrode (GCE) in various initial molar concentrations ([EDOTVBCz]0?=?1.0, 1.5, 2.0, and 3.0) in 0.1 M lithium perchlorate (LiClO4)/acetonitrile (CH3CN). P(EDOTVBCz)/GCE was characterized by cyclic voltammetry, FTIR reflectance-attenuated total reflection spectroscopy, scanning electron microscopy–energy dispersive X-ray analysis, atomic force microscopy, and electrochemical impedance spectroscopy (EIS). EIS was used to determine the capacitive behaviors of modified GCE via Nyquist, Bode magnitude, Bode phase, and admittance plots. The highest low-frequency capacitance value was obtained as C LF?=?~2.35 mF cm?2 for [EDOTVBCz]0?=?3.0 mM. Double-layer capacitance of the polymer/electrolyte system was calculated as C dl?=?~2.78 mF cm?2 for [EDOTVBCz]0?=?1.0 and 3.0 mM. The maximum phase angle was obtained as θ?=?~76.7o for [EDOTVBCz]0?=?1.0, 1.5, 2.0, and 3.0 mM at the frequency of 20.6 Hz. AC impedance spectra of P(EDOTVBCz)/LiClO4/CH3CN was obtained by performing electrical equivalent circuit model of R(Q(R(CR))) with linear Kramers–Kronig test.
Figure
SEM-EDX analysis of P(EDOTVBCz)/CFME EDX point analysis inset: SEM point analysis, [EDOTVBCz]0?=?3 mM. Chronoamperometric method of constant potential at 1.6 V, 300 s in 0.1 M LiClO4/CH3CN  相似文献   

20.
The fourth harmonic emission (200 nm) of a femtosecond Ti:sapphire laser (35 fs) was generated and used in the multiphoton ionization of 49 pesticides in gas chromatography/time-of-flight mass spectrometry. The limit of detection was improved when the ionization source from the third harmonic emission (267 nm) was replaced with the fourth harmonic emission for several pesticide molecules that contained no conjugated double bonds since their absorption bands are located in the far-ultraviolet region. This analytical instrument was used in the analysis of a series of real samples including potatoes, carrots, and cabbage, and a signal suspected to arise from di-allate was observed for the potato sample.
Figure  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号