首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this investigation is to introduce and validate a practical ultrasound source to be used in the investigation of the nonlinear material properties of liquids and soft tissues studied in vitro. Methods based on the progressive distortion of finite amplitude ultrasonic waves in the low megahertz frequency range are most easily implemented under the assumption of plane wave propagation. However, achieving an approximately planar ultrasonic field over substantial propagation distances can be challenging. Furthermore, undesired harmonic distortion of the ultrasonic field prior to insonification of the specified region of interest represents another serious limitation. This paper introduces an approach based on the use of the ultrasonic field emanating from a stainless-steel delay line. Both simulation and direct experimental measurement demonstrate that such a field exhibits relatively planar wave fronts to a good approximation (such that a 3-mm-diam receiver would be exposed to no more than 3 dB of loss across its face) and is free from the significant harmonic distortion that would occur in a conventional water path.  相似文献   

2.
3.
In the present study, a hybrid method is proposed for predicting the acoustic performance of a silencer for a nonlinear wave. This method is developed by combining two models: (i) a frequency-domain model for the computation of sound attenuation due to a silencer in a linear regime and (ii) a wavenumber space model for the prediction of the nonlinear time-evolution of finite amplitudes of the acoustic wave in a uniform duct of the same length as the silencer. The present method is proposed under the observation that the physical process of the nonlinear sound attenuation phenomenon of a silencer may be decoupled into two distinct mechanisms: (a) a linear acoustic energy loss that owes to the mismatch in the acoustic impedance between reactive elements and/or the sound absorption of acoustic liners in a silencer; (b) a nonlinear acoustic energy loss that is due to the energy-cascade phenomenon that arises from the nonlinear interaction between components of different frequencies. To establish the validity of the present model for predicting the acoustic performance of silencers, two model problems are considered. First, the performance of simple expansion mufflers with nonlinear incident waves has been predicted. Second, proposed method is applied for computing nonlinear acoustic wave propagation in the NASA Langley impedance duct configuration with ceramic tubular liner (CT57). Both results obtained from the hybrid models are compared with those from computational aero-acoustic techniques in a time-space domain that utilize a high-order finite-difference method. Through these comparisons, it is shown that there are good agreements between the two predictions. The main advantage of the present method is that it can effectively compute the nonlinear acoustic performance of silencers in nonlinear regimes without time-space domain calculations that generally entail a greater computational burden.  相似文献   

4.
吕君  赵正予  周晨  张援农 《物理学报》2011,60(8):84301-084301
根据Fenlon理论推导得到了多频声源的辐射声压.基于单频声源谐波指向性的求解方法,得到了二阶近似下的双频声源辐射出的声波相互作用时的远场指向性.分别研究和讨论了在初始辐射声压和频率不同情况下,两列波的相互作用对其中一列波的一阶波和二阶波远场指向性的影响.结果表明,声波间的相互作用对声源远场指向性的影响根据各波之间的相对初始辐射声压和相对频率的不同而有所变化. 关键词: 有限振幅声波 非线性相互作用 远场指向性  相似文献   

5.
Experimental data reveals that attenuation is an important phenomenon in medical ultrasound. Attenuation is particularly important for medical applications based on nonlinear acoustics, since higher harmonics experience higher attenuation than the fundamental. Here, a method is presented to accurately solve the wave equation for nonlinear acoustic media with spatially inhomogeneous attenuation. Losses are modeled by a spatially dependent compliance relaxation function, which is included in the Westervelt equation. Introduction of absorption in the form of a causal relaxation function automatically results in the appearance of dispersion. The appearance of inhomogeneities implies the presence of a spatially inhomogeneous contrast source in the presented full-wave method leading to inclusion of forward and backward scattering. The contrast source problem is solved iteratively using a Neumann scheme, similar to the iterative nonlinear contrast source (INCS) method. The presented method is directionally independent and capable of dealing with weakly to moderately nonlinear, large scale, three-dimensional wave fields occurring in diagnostic ultrasound. Convergence of the method has been investigated and results for homogeneous, lossy, linear media show full agreement with the exact results. Moreover, the performance of the method is demonstrated through simulations involving steered and unsteered beams in nonlinear media with spatially homogeneous and inhomogeneous attenuation.  相似文献   

6.
7.
Both fundamental boundary-value problems for elastic waves produced by a spherical source are solved on the assumption that the boundary conditions on the surface of the source apart from being an arbitrary function of the coordinates are also an arbitrary function of time.  相似文献   

8.
In this Letter, we present an analytical study of a high-order acoustic wave equation in one dimension, and reformulate a previously given equation in terms of an expansion of the acoustic Mach number. We search for non-trivial traveling wave solutions to this equation, and also discuss the accuracy of acoustic wave equations in terms of the range of Mach numbers for which they are valid.  相似文献   

9.
金属点蚀过程声发射源机制研究   总被引:3,自引:0,他引:3  
耿荣生  傅刚强 《声学学报》2002,27(4):369-372
研究了腐蚀特别是点蚀过程产生应力波,即声发射(AE)的源机制,估算了单个钝化膜破裂所产生的薄板表面位移量级,并用实验进行了论证。作者提出,利用板波声发射理论加上参数识别方法,可将腐蚀过程产生的声发射信号同背景噪声相区别。  相似文献   

10.
11.
A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach (based on a Fourier series representation of the propagating wave) are given for circular source geometry, which represents the most challenging case from the computational time point of view. For two cases, short (2 cycle) and long (8 cycle) 2 MHz bursts, the computational times were 10 min and 15 min versus 2 h and 8 h for the TAWE method versus the conventional method, respectively.  相似文献   

12.
13.
14.
The principle of applying a selective phase conjugation of the second harmonic of a focused ultrasonic wave to diagnosing inhomogeneity of the nonlinear parameter in an acoustic medium is considered. A solution to the three-dimensional problem of harmonic generation by phase-conjugated waves in a nonlinear medium with a localized isoechogenous inclusion is obtained. The signal amplitudes detected by a transmitting-receiving transducer at the second and forth harmonics of a probe wave are calculated for varying position of the inclusion relative to the focus.  相似文献   

15.
Some properties of nonlinear dust acoustic waves in magnetized dusty plasma with variable charges by reductive perturbation technique have been studied. The effect of adiabatic dust charge variations under the assumption that the ratio of dust charging time to the dust hydrodynamical time is very small, and the nonadiabatic dust charges variations under the assumption that the same ratio is small but finite, are also incorporated. It is seen that the magnetic field and the dust charge variations significantly modify the wave amplitude. It is also seen that in case of adiabatic charge variations, the Korteweg-de Vries (KdV) equation governs the nonlinear dust acoustic wave, whereas in case of nonadiabatic dust charge variations, the wave is governed by the KdV Burger equation. Nonadiabaticity generated anomalous dissipative effect causes generation of the dust acoustic shock wave. Numerical integration of KdV Burger equation shows that the dust acoustic wave admits oscillatory (dispersion dominant) or monotone (dissipation dominant) shock solutions depending on the magnitude of the coefficient of the Burger term  相似文献   

16.
A simple and accurate method for the estimation of ultrasonic transducer fields is developed. In the method, the angular spectrum is employed to evaluate the three-dimensional propagation from a measured plane to an arbitrary parallel plane. The implementation uses a discrete convolution that is described in detail. Relative to conventional spatial-frequency representations, the implementation of the angular spectrum method in this paper has the advantage of being free from artifacts, enabling sample spacing to be greater than one half wavelength, using memory efficiently, and interpolating the measured data. The loosened sampling requirement and natural interpolation of the method permit efficient reconstruction of the full three-dimensional acoustic field from a coarse sound pressure measurement on single plane.  相似文献   

17.
固体中脉冲激光激发声表面波的理论研究   总被引:4,自引:0,他引:4       下载免费PDF全文
本文运用本征函数展开的方法对固体材料中脉冲激光激发的声表面波进行了理论研究,在考虑热弹激发的条件下,利用三维的轴对称模型,得到了脉冲激光光源的脉冲宽度以及聚焦半径对固体材料中声表面波信号的时域及频域的影响,对进行超短脉冲激光激发超声的研究具有指导意义。  相似文献   

18.
孙健明  于洁  郭霞生  章东 《物理学报》2013,62(5):54301-054301
在高强度聚焦超声(high intensity focused ultrasound, HIFU) 的研究中, 生物组织的衰减和色散性质会对声能量的空间分布产生影响. 本文提出应用分数导数修正非线性Khokhlov-Zabolotskaya-Kuznetsov (KZK)方程, 研究生物组织中非线性HIFU声场. 对三种生物仿体的衰减和声速色散的理论实验研究表明分数导数应用的可行性, 在此基础上通过数值仿真分析研究了衰减及声速随频率的变化对HIFU焦域分布的影响. 研究结果表明, 在计算强非线性聚焦超声时, 由于高次谐波的强色散作用, 引入分数导数来解决生物组织特殊的衰减以及色散问题可进一步提高HIFU治疗的安全性. 关键词: 分数导数 声衰减 色散 高强度聚焦超声  相似文献   

19.
This paper reports the successful operation of a 70 MHz driving surface acoustic wave (SAW) linear motor with a miniaturized stator transducer. This paper also deals with an investigation into an optimized slider design for the miniaturized SAW linear motor. The performance of three silicon type sliders, with different projection size, was compared. Output forces of the three sliders were measured with change of pre-load. It was found that the slider with smaller projection tended to produce greater output force.  相似文献   

20.
A new parabolic equation is derived to describe the propagation of nonlinear sound waves in inhomogeneous moving media. The equation accounts for diffraction, nonlinearity, absorption, scalar inhomogeneities (density and sound speed), and vectorial inhomogeneities (flow). A numerical algorithm employed earlier to solve the KZK equation is adapted to this more general case. A two-dimensional version of the algorithm is used to investigate the propagation of nonlinear periodic waves in media with random inhomogeneities. For the case of scalar inhomogeneities, including the case of a flow parallel to the wave propagation direction, a complex acoustic field structure with multiple caustics is obtained. Inclusion of the transverse component of vectorial random inhomogeneities has little effect on the acoustic field. However, when a uniform transverse flow is present, the field structure is shifted without changing its morphology. The impact of nonlinearity is twofold: it produces strong shock waves in focal regions, while, outside the caustics, it produces higher harmonics without any shocks. When the intensity is averaged across the beam propagating through a random medium, it evolves similarly to the intensity of a plane nonlinear wave, indicating that the transverse redistribution of acoustic energy gives no considerable contribution to nonlinear absorption. Published in Russian in Akusticheskiĭ Zhurnal, 2006, Vol. 52, No. 6, pp. 725–735. This article was translated by the authors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号