首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate GaN nanowire (NW) current rectifiers which were formed by assembling n-GaN nanowires on a patterned p-Si substrate by means of alternating current (ac) dielectrophoresis. The dielectrophoresis was accomplished at a frequency of 10 kHz with three different ac bias voltages (5, 10, and 15 Vp–p), indicating that the number of aligned GaN nanowires increased with increasing ac bias voltage. The n-GaN NW/p-Si diodes showed well-defined current rectifying behavior with a forward voltage drop of 1.2–1.5 V at a current density of 200 A/cm2. We observed that the GaN NW diode functioned well as a half-wave rectifier. PACS 71.20.Nr; 73.40.Cg; 73.40.Ei; 73.40.Kp  相似文献   

2.
The ground-state polaron self-trapped energy and effective mass due to the surface optical (SO) phonon modes in a freestanding wurtzite GaN nanowire (NW) were studied by means of the Lee–Low–Pines variational approach. Based on the dielectric continuum and Loudon’s uniaxial crystal models, the polar optical phonon modes in the one-dimensional (1D) systems are analyzed, and the vibrating spectra of SO modes and electron–SO phonon coupling functions are discussed and analyzed. The calculations on the ground-state polaron self-trapped energy and correction of effective mass due to the SO phonon modes in the 1D GaN NWs reveal that the polaron self-trapped energy and correction of effective mass are far larger than those in 1D GaAs NW systems. The reasons resulting in this obvious difference in the two 1D structures are mainly due to the different electron–phonon coupling constants and electron effective masses of bulk materials constituting the two types of 1D confined system. Finally, the polaronic properties of the wurtzite 1D GaN NWs have been compared with those of the wurtzite GaN-based two-dimensional quantum wells. The physical origination of these characteristics and their distinction in the different-dimensionality systems has been analyzed in depth.  相似文献   

3.
The Ba and Cs adsorption on the n-GaN(0 0 0 1) surface has been studied in situ by the threshold photoemission spectroscopy using s- and p-polarized light excitation. Two surface bands induced by Ba (Cs) adsorption are revealed in surface photoemission spectra below the Fermi level. The surface-Fermi level position is found to be changed from significantly below the conduction band minimum (CBM) at clean n-GaN surface to high above the CBM at Ba, Cs/n-GaN interfaces, with the transition from depletion to electron accumulation occurring at low coverages. Photoemission from the accumulation nanolayer is found to excite by visible light in the transparency region of GaN. Appearance of an oscillation structure in threshold photoemission spectra of the Ba, Cs/n-GaN interfaces with existing the accumulation layer is found to originate from Fabry–Perot interference in the transparency region of GaN.  相似文献   

4.
S.-K. Lee  T.-H. Kim  S.-Y. Lee  K.-C. Choi 《哲学杂志》2013,93(14-15):2105-2115
We report on high-brightness GaN nanowire UV–blue light emitting diodes (LEDs), which are fabricated by coupling of n-GaN nanowires and p-GaN substrates using two assembly methods, random dispersion (RD) and dielectrophoresis assisted assembly deposition (DAAD). These GaN nanowire LEDs have bright UV–blue emission (411–437?nm) from the n-GaN nanowire/p-GaN substrate junction and the light emission is strong enough to be observed with the naked eye even for a single GaN nanowire LED. The results reported here should have significant implications for the fabrication of highly efficient, low-cost UV–blue LEDs with low power consumption, as compared to conventional thin-film based GaN LEDs.  相似文献   

5.
《Current Applied Physics》2020,20(7):871-876
It was firstly demonstrated that the resistance of bridging GaN nanowires (NWs) can be in situ controlled via current driven self-heating. Owning to the absence of contact barrier at the electrodes of bridging NWs, the Joule-heating can be generated mainly on the NW itself rather than on the electrodes. With increase of NW bias-voltage (BiV) from 2.5 V to 10 V, the generated Joule-heating can make the NW oxidized in air, which leads to about 700 fold increase in NW resistance (from 82.5 Ω to 6 × 104 Ω). Theoretical simulation indicated that a NW temperature of 649 K can realized with a BiV of 4 V, which agrees well with the observation of thermal emission microscope. Moreover, the measured oxygen composition in the NWs was increased with increasing BiV, which indicates that the NWs were oxidized by BiV induced self-heating. This work provides a simple method for precise control of NW resistance, which can be further applied to the formation of core/shell NWs with real time monitoring.  相似文献   

6.
Undoped CdO films were prepared by sol–gel method. Transparent heterojunction diodes were fabricated by depositing n-type CdO films on the n-type GaN (0001) substrate. Current–voltage (IV) measurements of the device were evaluated, and the results indicated a non-ideal rectifying characteristic with IF/IR value as high as 1.17×103 at 2 V, low leakage current of 4.88×10−6 A and a turn-on voltage of about 0.7 V. From the optical data, the optical band gaps for the CdO film and GaN were calculated to be 2.30 eV and 3.309 eV, respectively. It is evaluated that interband transition in the film is provided by the direct allowed transition. The n-GaN (0001)/CdO heterojunction device has an optical transmission of 50–70% from 500 nm to 800 nm wavelength range.  相似文献   

7.
We demonstrate the high potential of GaN nanowires (NWs) to convert mechanical energy into electric energy. Using an atomic force microscope equipped with a Resiscope module, an average output voltage of –74 mV and a maximum of –443 mV ± 2% per NW were measured. This latter value is the highest reported so far for GaN NWs. By considering these output signals, we have estimated an average and a maximum power density generated by one layer of GaN NWs of the order of 5.9 mW/cm2 and 130 mW/cm2, respectively. These results offer promising prospects for the use of GaN NWs for high‐efficiency ultracompact piezogenerators. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We report the surface‐enhanced Raman scattering (SERS) effect from the apex of single‐crystalline Ag nanowires (NWs). We also fabricated tip‐enhanced Raman spectroscopy (TERS) tips by attaching individual Ag NWs to W wires by using the alternating current dielectrophoresis (AC‐DEP) method. The single‐crystalline Ag NW tips could overcome many of the shortcomings of conventional TERS tips. Most importantly, the results obtained from TERS using single‐crystalline metal NWs are very reproducible, and the tips are also reusable. This development represents a significant progress in making TERS a reliable optical characterization technique with nanometer spatial resolution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents photodetectors having vertically stacked electrodes with sub-micron (300 nm) separation based on silicon nanowire (SiNW) nanocomposites. The thin-film-like devices are made using standard photolithography instead of electron beam lithography and thus are amenable to scalable low-cost manufacturing. The processing technique is not limited to SiNWs and can be extended to different nanowires (NWs) (e.g., ZnO, CdSe) and substrates. The current–voltage characteristics show Schottky behaviour that is dependent on the properties of the contact metal and that of the pristine SiNWs. This makes these devices suitable for examination of electronic transport in SiNWs. Preliminary results for light sensitivity show promising photoresponse that is a function of effective NW density.  相似文献   

10.
In this work, photovoltaic performance of Ga-doped ZnO thin film/Si NWs heterojunction diodes was investigated. Highly dense and vertically well-aligned Si NW arrays were successfully synthesised on a p-type (1?0?0)-oriented Si wafer through cost-effective metal-assisted chemical etching technique. Ga-doped ZnO thin films were deposited onto Si NWs via radio frequency magnetron sputtering to construct three-dimensional heterostructures. Photovoltaic characteristics of the fabricated diodes were determined with current density (J)–voltage (V) measurements under simulated solar irradiation of AM 1.5 G. The optimal open-circuit voltage, short-circuit current density, fill factor and power conversion efficiency were found to be 0.37 V, 3.30 mA cm?2, 39.00 and 0.62%, respectively. Moreover, photovoltaic diodes exhibited relatively high external quantum efficiency over the broadband wavelengths between 350 and 1100 nm interval of the spectrum. The observed photovoltaic performance in this study clearly indicates that the investigated device structure composed of Ga-doped ZnO thin film/Si NWs heterojunctions could facilitate an alternative pathway for optoelectronic applications in future, and be a promising alternative candidate for high-performance low-cost new-generation photovoltaic diodes.  相似文献   

11.
We fabricated a free-standing structure of a GaN nanowire by selectively etching Si3N4, previously grown on a SiO2 substrate, for application to three-dimensional integrated circuits such as nanorelays and actuators. In the nanowire-deposition process we adopted electrophoresis and reactive ion etching techniques to achieve a well-aligned and free-standing nanowire. The electrical transport measurements were performed from room temperature down to liquid-nitrogen temperature. The current–voltage (I–V) characteristics showed a rectifying behavior in the whole temperature range. We analyze this property as a Schottky barrier formation between the nanowire and electrodes. PACS  61.46.+w; 73.22.-f; 73.40.Ei; 81.07.Bc; 81.16.Rf  相似文献   

12.
This work reports important aspects of technology development and characterization for GaN based diodes operating at high electric fields. The considered operation conditions result, in comparison to III–V semiconductor devices, from the higher values of threshold field for intervalley transfer of electrons. This lies above 150 kV/cm and requires correspondingly higher biasing voltages and currents through semiconducting layers of transferred electron devices, switches or NDR (negative differential resistance) diodes. Mesa-based vertical and lateral devices using GaN layers on sapphire substrate were considered for current–voltage characteristics under very high electric field conditions. A systematic investigation of MOCVD-grown diode structures with regular, tapered mesa designs and variable dimensions was carried out under pulsed-bias condition. The current–voltage characteristics showed threshold voltages for saturation corresponding to electric fields well above the critical value of 150 kV/cm in the active layer. Self-heating and electromigration effects have been addressed in relation with biasing and metallization conditions.  相似文献   

13.
The current–voltage (IV) and capacitance–voltage (CV) characteristics of silicon p–i–n diodes have been investigated both prior to and after radiation-induced damage by 1 MeV neutrons. The results have been analysed and several rates of damage evaluated. The indication is mainly that radiation damage occurs only up to certain fluencies. Beyond these, the material becomes resistant to further damage. Thus, initial heavy radiation damage can be used to achieve radiation-hardness of detector diodes. This result is contrary to previous suggestions that continued irradiation renders the detectors inoperable but is in good agreement with our results on radiation-hardness induced by gold-doping.  相似文献   

14.
《Current Applied Physics》2010,10(2):703-707
This paper demonstrates the manipulation of neutral dielectric wires with high aspect ratio by a pulsed electric field. Dielectrophoretic (DEP) force and torque were employed to align the randomly positioned GaN nano- and micro-wires. A simulation of the DEP force alignment process confirmed the experimentally observed dependence on alignment yield to frequency and bias of the electric field. Current–voltage measurements of the GaN micro-wires, aligned by DEP force and torque to pre-patterned metal contacts, confirms that the direct manipulation of micro-sized wire with an electric field oscillated at a frequency of 10 kHz–5 MHz.  相似文献   

15.
In this article, we investigate the silicide/Si nanowire (Si NW) interface properties based on a detailed characterization of PtSi/NW nanocontacts. For that purpose, we fabricate two-terminal structures implemented on vertical Si NWs arrays defined by a top-down approach with an ultra-high density. Each termination of Si NWs is silicided and contacted to an external metal line. The temperature dependence and the non-linearity of current–voltage (I–V) characteristics are identified as a clear signature indicating that contacts dominate the overall resistance of the Si NW arrays. It is demonstrated that this trend remains valid in the limit of extremely small NW radii and that trap-induced surface depletion also reduces the contact injection cross-section. In this context, the electrostatic landscape at the vicinity of the silicide-to-semiconductor contact interface is dominated by the field effect imposed by peripheral surface states and not by the Schottky barrier height.  相似文献   

16.
Negative differential capacitance (NDC) has been observed in n-GaN/p-Si heterojunctions grown by plasma assisted molecular beam epitaxy (PAMBE). The NDC is observed at low frequencies 1 and 10 kilohertz (kHz) and disappeared at a higher testing frequency of 100 kHz. The NDC is also studied with temperature and found that it has disappeared above 323 °C. Current-Voltage (I-V) characteristics of n-GaN /p-Si heterojunction were measured at different temperatures and are attributed to the space-charge-limited current (SCLC). A simple model involving two quantum states is proposed to explain the observed NDC behavior.  相似文献   

17.
The p–n junction photodiodes with InGaN/GaN MQD have been prepared by metal-organic chemical vapor deposition (MOCVD) growth; we achieved nanoscale InGaN self-assembled QDs in the well layers of the active region. The RT PL spectrum peak position for the fabricated InGaN/GaN MQD p–n Junction PDs is located at 464.6 nm and FWHM is 24.2 nm. After finishing device process, it was fond that the turn on voltage in forward bias and the break down voltage in reverse bias are about 3 and −13.5 V, respectively. Furthermore, with 1, 2, and 3 V applied bias, the maximum responsivity of the fabricated MQD p–n junction PD was observed at 350 nm, and the minimum of spectral response was measured at 465 nm. It was also found that the responsivity was nearly a constant from 390 to 440 nm. It seems to suggest that the spectral response in the range of 390–440 nm is due to the effect of the InGaN dots-in a-well active layers.  相似文献   

18.
We propose a technique to fabricate self-connected horizontal Si nanowire (NW) field effect transistors (FETs) by a self-assembly mechanism. We show direct growth of Si NWs between two predefined metallic electrodes along the SiO2 gate oxide using the vapour–liquid–solid (VLS) growth mode. In our approach, the gold catalyst layer is covered by the contact metal, giving rise to selective and localized catalytic activity and growth of NWs from the gold edges. The diameter of the NWs can be adjusted by the thickness of the catalyst layer. Using such a process, we demonstrate field effect operation on the conductivity of a non-intentionally doped 20 nm diameter Si NW. This technique can be implemented in three dimensions, paving the way to three-dimensionalD integration using vertical stacks of self-connected FETs.  相似文献   

19.
GaN and AlN nanowires (NWs) have attracted great interests for the fabrication of novel nano-sized devices. In this paper, the nucleation processes of GaN and AlN NWs grown on Si substrates by molecular beam epitaxy (MBE) are investigated. It is found that GaN NWs nucleated on in-situ formed Si3N4 fully release the stress upon the interface between GaN NW and amorphous Si3N4 layer, while AlN NWs nucleated by aluminization process gradually release the stress during growth. Depending on the strain status as well as the migration ability of III group adatoms, the different growth kinetics of GaN and AlN NWs result in different NW morphologies, i.e., GaN NWs with uniform radii and AlN NWs with tapered bases.  相似文献   

20.
《Current Applied Physics》2014,14(3):491-495
Wet chemical passivation of n-GaN surface was carried out by dipping GaN samples in ammonium sulphide diluted in aqueous and alcoholic solvent base solutions. Photoluminescence (PL) investigations indicated that sulphide solution effectively led to the reduction of GaN surface states. Increased band edge PL peak showed that S2− ions are more active in alcohol based solvents. X-ray photoelectron spectroscopy revealed reduction in surface oxides by introduction of sulphide species. Ni/n-GaN Schottky barrier diodes were fabricated on passivated surfaces. Remarkable improvement in the Schottky barrier height (0.98 eV for passivated diodes as compared to 0.75 eV for untreated diodes) has been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号