首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A closed-form solution is obtained for the problem of a mode-III interfacial edge crack between two bonded semi-infinite dissimilar elastic strips. A general out-of-plane displacement potential for the crack interacting with a screw dislocation or a line force is constructed using conformal mapping technique and existing dislocation solutions. Based on this displacement potential, the stress intensity factor (SIF, KIII) and the energy release rate (ERR, GIII) for the interfacial edge crack are obtained explicitly. It is shown that, in the limiting special cases, the obtained results coincide with the results available in the literature. The present solution can be used as the Green’s function to analyze interfacial edge cracks subjected to arbitrary anti-plane loadings. As an example, a formula is derived correcting the beam theory used in evaluation of SIF (KIII) and ERR (GIII) of bimaterials in the double cantilever beam (DCB) test configuration.  相似文献   

2.
A new formula is obtained to calculate dynamic stress intensity factors of the three-point bending specimen containing a single edge crack in this study. Firstly, the weight function for three-point bending specimen containing a single edge crack is derived from a general weight function form and two reference stress intensity factors, the coefficients of the weight function are given. Secondly, the history and distribution of dynamic stresses in uncracked three-point bending specimen are derived based on the vibration theory. Finally, the dynamic stress intensity factors equations for three-pointing specimen with a single edge crack subjected to impact loadings are obtained by the weight function method. The obtained formula is verified by the comparison with the numerical results of the finite element method (FEM). Good agreements have been achieved. The law of dynamic stress intensity factors of the three-point bending specimen under impact loadings varing with crack depths and loading rates is studied.  相似文献   

3.
A new formula is obtained to calculate dynamic stress intensity factors of the three-point bending specimen containing a single edge crack in this study. Firstly, the weight function for three-point bending specimen containing a single edge crack is derived from a general weight function form and two reference stress intensity factors, the coefficients of the weight function are given. Secondly, the history and distribution of dynamic stresses in uncracked three-point bending specimen are derived based on the vibration theory. Finally, the dynamic stress intensity factors equations for three-pointing specimen with a single edge crack subjected to impact loadings are obtained by the weight function method. The obtained formula is verified by the comparison with the numerical results of the finite element method (FEM). Good agreements have been achieved. The law of dynamic stress intensity factors of the three-point bending specimen under impact loadings varing with crack depths and loading rates is studied.  相似文献   

4.
Assuming elastic-plastic material behavior the slow growth of Mode III crack under both monotonic and pulsating loadings is considered. Rice's idea of universal R-curve is employed while the mathematical analysis is based on the one-dimensional plasticity model suggested by Kostrov and Nikitin. Motion of a quasi-static Mode III crack is studied and the stable/unstable transition points are found through application of the final stretch failure condition proposed in 1972 by Wnuk. A logarithmic formula for fatigue crack extension rate is derived. Results are compared to other well-known solutions.  相似文献   

5.
The elastostatic plane problem of an infinite elastic layer with an internal crack is considered. The elastic layer is subjected to two different loadings, (a) the elastic layer is loaded by a symmetric transverse pair of compressive concentrated forces P/2, (b) it is loaded by a symmetric transverse pair of tensile concentrated forces P/2. The crack is opened by an uniform internal pressure p 0 along its surface and located halfway between and parallel to the surfaces of the elastic layer. It is assumed that the effect of the gravity force is neglected. Using an appropriate integral transform technique, the mixed boundary value problem is reduced to a singular integral equation. The singular integral equation is solved numerically by making use of an appropriate Gauss–Chebyshev integration formula and the stress-intensity factors and the crack opening displacements are determined according to two different loading cases for various dimensionless quantities.  相似文献   

6.
The yield stress of polymethylmethacrylate (PMMA) composites filled with ultrafine SiO2 particles was measured as a function of the draw temperature, rate of strain and filler content. The yield stress of the composites increased with increasing filler content and decreasing filler size. The tensile yield stress was found to be reducible with regard to draw temperature, rate of strain and filler content. At a given filler content, a master curve was obtained for the yield stress plotted versus the logarithm of the strain rate. The Arrhenius plot of the shift factors (a T ) used to produce the strain rate-temperature master curve formed a single curve for all sizes and loadings of the filler. The master curves obtained for different loadings of a filler of given size could be further reduced into a master-master curve by shifting them along the axis of strain rate, with the logarithm of the second shift factors (loga c ) proportional to the 4/5th power of the filler volume fraction (V f ). The proportionality constant and the exponent represent the extent of the filler reinforcing effect in the polymer. These values were found to be correlated with the critical surface tension of the polymers.  相似文献   

7.
For any plane crack in an infinite isotropic elastic body subjected to some constant loading, Bueckner–Rice's weight function theory gives the variation of the stress intensity factors due to a small coplanar perturbation of the crack front. This variation involves the initial SIF, some geometry independent quantities and an integral extended over the front, the “fundamental kernel” of which is linked to the weight functions and thus depends on the geometry considered. The aim of this paper is to determine this fundamental kernel for the tunnel-crack. The component of this kernel linked to purely tensile loadings has been obtained by Leblond et al. [Int. J. Solids Struct. 33 (1996) 1995]; hence only shear loadings are considered here. The method consists in applying Bueckner–Rice's formula to some point-force loadings and special perturbations of the crack front which preserve the crack shape while modifying its size and orientation. This procedure yields integrodifferential equations on the components of the fundamental kernel. A Fourier transform in the direction of the crack front then yields ordinary differential equations, that are solved numerically prior to final Fourier inversion.  相似文献   

8.
This paper numerically discusses stress intensity factor (SIF) calculations for surface cracks in round bars subjected to single and combined loadings. Different crack aspect ratios, a/b, ranging from 0.0 to 1.2 and the relative crack depth, a/D, in the range of 0.1 to 0.6 are considered. Since the torsion loading is non-symmetrical, the whole finite element model has been constructed, and the loadings have been remotely applied to the model. The equivalent SIF, F*EQF^{*}_{EQ} is then used to combine the individual SIF from the bending or tension with torsion loadings. Then, it is compared with the combined SIF, F*FEF^{*}_{FE} obtained numerically using the finite element analysis under similar loadings. It is found that the equivalent SIF method successfully predicts the combined SIF, F*EQF^{*}_{EQ} for Mode I when compared with F*FEF^{*}_{FE}. However, some discrepancies between the results, determined from the two different approaches, occur when F III is involved. Meanwhile, it is also noted that the F*FEF^{*}_{FE} is higher than the F*EQF^{*}_{EQ} due to the difference in crack face interactions and deformations.  相似文献   

9.
The proposal ofJackson andKaye (1966) for evaluating both differences of normal stress in a viscometric flow by using only total thrust measurements in a cone- and-plate viscometer is extended. An analytic relation valid for all values of the separation between cone and plate is obtained, which is shown to include as special cases the well-known cone- and-plate formula, the parallel-plate formula ofKotaka et al. (1959) andJackson andKaye's.Examples of the method's application to experimental results are given.On leave from: Department of Chemical Engineering, Pembroke Street, Cambridge.  相似文献   

10.
In this study, a new Green??s function and a new Green-type integral formula for a 3D boundary value problem (BVP) in thermoelastostatics for a quarter-space are derived in closed form. On the boundary half-planes, twice mixed homogeneous mechanical boundary conditions are given. One boundary half-plane is free of loadings and the normal displacements and the tangential stresses are zero on the other one. The thermoelastic displacements are subjected by a heat source applied in the inner points of the quarter-space and by mixed non-homogeneous boundary heat conditions. On one of the boundary half-plane, the temperature is prescribed and the heat flux is given on the other one. When the thermoelastic Green??s function is derived, the thermoelastic displacements are generated by an inner unit point heat source, described by ??-Dirac??s function. All results are obtained in elementary functions that are formulated in a special theorem. As a particular case, when one of the boundary half-plane of the quarter-space is placed at infinity, we obtain the respective results for half-space. Exact solutions in elementary functions for two particular BVPs for a thermoelastic quarter-space and their graphical presentations are included. They demonstrate how to apply the obtained Green-type integral formula as well as the derived influence functions of an inner unit point body force on volume dilatation to solve particular BVPs of thermoelasticity. In addition, advantages of the obtained results and possibilities of the proposed method to derive new Green??s functions and new Green-type integral formulae not for quarter-space only, but also for any canonical Cartesian domain are also discussed.  相似文献   

11.
When Bingham fluid is in motion, plugged flow often occurs at places far from the boundary walls. As there is not a decisive formula of constitutive relation for plugged flow, in some problems the solutions obtained may be indefinite. In this paper, annular flow and pipe flow are discussed, and unique solution is obtained in each case by utilizing the analytic property of shear stress. The solutions are identical in form with the commonly used formula for the pressure drop of mud flow in petroleum engineering.  相似文献   

12.
T-stress as an important parameter characterizing the stress field around a cracked tip has attracted much attention. This paper concerns the T-stress near a cracked tip in a magnetoelectroelastic solid. By applying the Fourier transform, we solve the associated mixed boundary-value problem. Adopting crack-faces electromagnetic boundary conditions nonlinearly dependent on the crack opening displacement, coupled dual integral equations are derived. Then, the closed-form solution for the T-stress is obtained. A comparison of the T stresses for a cracked magnetoelectroelastic solid and for a cracked purely elastic material is made. Obtained results reveal that in addition to applied mechanical loading, the T-stress is dependent on electric and magnetic loadings for a vacuum crack.  相似文献   

13.
In this paper, the problem of a subinterface crack in an anisotropic piezoelectric bimaterial is analyzed. A system of singular integral equations is formulated for general anisotropic piezoelectric bimaterial with kernel functions expressed in complex form. For commonly used transversely isotropic piezoelectric materials, the kernel functions are given in real forms. By considering special properties of one of the bimaterial, various real kernel functions for half-plane problems with mechanical traction-free or displacement-fixed boundary conditions combined with different electric boundary conditions are obtained. Investigations of half-plane piezoelectric solids show that, particularly for the mechanical traction-free problem, the evaluations of the mechanical stress intensity factors (electric displacement intensity factor) under mechanical loadings (electric displacement loading) for coupled mechanical and electric problems may be evaluated directly by considering the corresponding decoupled elastic (electric) problem irrespective of what electric boundary condition is applied on the boundary. However, for the piezoelectric bimaterial problem, purely elastic bimaterial analysis or purely electric bimaterial analysis is inadequate for the determination of the generalized stress intensity factors. Instead, both elastic and electric properties of the bimaterial’s constants should be simultaneously taken into account for better accuracy of the generalized stress intensity factors.  相似文献   

14.
Taylor-Hood finite elements provide a robust numerical discretization of Navier-Stokes equations (NSEs) with arbitrary high order of accuracy in space. To match the accuracy of the lowest degree Taylor-Hood element, we propose a very efficient time-stepping methods for unsteady flows, which are based on high-order semi-implicit backward difference formulas (SBDF) and the inclusion of grad -div term in the NSE. To mitigate the impact on the numerical accuracy (in time) of the extrapolation of the nonlinear term in SBDF, several variants of nonlinear extrapolation formulas are investigated. The first approach is based on an extrapolation of the nonlinear advection term itself. The second formula uses the extrapolation of the velocity prior to the evaluation of the nonlinear advection term as a whole. The third variant is constructed such that it produces similar error on both velocity and pressure to that with fully implicit backward difference formulas methods at a given order of accuracy. This can be achieved by fixing one-order higher than usually done in the extrapolation formula for the nonlinear advection term, while keeping the same extrapolation formula for the time derivative. The resulting truncation errors (in time) between these formulas are identified using Taylor expansions. These truncation error formulas are shown to properly represent the error seen in numerical tests using a 2D manufactured solution. Lastly, we show the robustness of the proposed semi-implicit methods by solving test cases with high Reynolds numbers using one of the nonlinear extrapolation formulas, namely, the 2D flow past circular cylinder at Re=300 and Re = 1000 and the 2D lid-driven cavity at Re = 50 000 and Re = 100 000. Our numerical solutions are found to be in a good agreement with those obtained in the literature, both qualitatively and quantitatively.  相似文献   

15.
16.
Summary The Schwarz-Christoffel formula for the mapping of a polygon in thez-plane on an upper half-plane (thew-plane) is extended to deal with singlyconnected domains of quite general shape. The mapping problem in the general ease is shown to depend on the solution of an awkward integrodifferential equation and an iterative method of finding this solution is indicated. Two further generalizations are made to the formula; these are (i) the boundary of the singly-connected domain in thez-plane is mapped on to afinite interval of the real axis of thew-plane instead of the whole of it, and (ii) the formula is extended to deal with doubly-connected domains.Paper, read at the first annual general meeting of the Australian Mathematical Society at Sydney, August, 1957.  相似文献   

17.
基于ICM方法,建立了多种载荷工况下受位移约束极小化结构重量的拓扑优化近似显式模型,采用精确对偶映射下的序列二次规划算法进行求解,得到了结构的最优拓扑.数值算例表明:ICM方法也可以很好地应用于多工况下板壳结构拓扑优化设计,且收敛快,稳定性好;边界条件和位移约束值都会影响结构的最优拓扑;多工况最优传力路径不是各个单工况最优传力路径的简单叠加.  相似文献   

18.
The classical solution for an isotropic elastic wedge loaded by a uniform pressure on one side of the wedge becomes infinite when the wedge angle 20 satisfies the equation tan 20 = 20. This is the critical wedge angle which also renders infinite solutions for other types of loadings. In this paper, we study the associated problem for the anisotropic elastic wedge. We first present uniform stress solutions which are possible for symmetric loadings. For antisymmetric loadings, a uniform stress solution is in general not possible and we present a non-uniform stress solution in which the stress depends on but not on r. The non-uniform stress solution breaks down at a critical angle. We present an equation for the critical angle which depends on the elastic constants. The Stroh formalism is employed in the analysis. An integral representation of the solution is obtained by using new identities which are derived in the paper.  相似文献   

19.
The interaction problem between a screw dislocation and a piezoelectric fiber composite with a semi-infinite wedge crack is investigated in this paper. The piezoelectric media are assumed to be transversely isotropic with the poling direction along the x 3 direction. The screw dislocation considered here involves a Burgers vector parallel to the poling direction with a line force and a line charge being applied at the core of the dislocation. Both cases of the screw dislocation located at the matrix and inclusion are observed. The analytical derivation is based on the complex variable and the conformal mapping methods. The exact solutions are obtained to calculate the forces on the dislocation and the crack-tip stress and electric displacement intensity factors. Based on these results, the anti-shielding and shielding effects for different loadings, material combinations, and geometric configurations are discussed in detail.  相似文献   

20.
 An integral representation formula for a class of functionals defined on and in (the space of special functions of bounded variation) is obtained without requiring the regularity conditions usually imposed in the literature. The approach is based on the general results of [10] and on a Poincaré-Wirtinger type inequality introduced by DE GIORGI, CARRIERO & LEACI [25]. Applications to relaxation problems and dimension-reduction problems in brittle thin films are presented. (Accepted May 8, 2002) Published online October 18, 2002 Communicated by L. Ambrosio  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号