首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanism of the solvent extraction of cytochrome c (Cyt c) via reverse micelle formation was studied from an electrochemical point of view. Potentiometric measurements showed that the Galvani potential difference of the oil/water (O/W) interface played a crucial role in the spontaneous extraction of Cyt c with bis(2-ethylhexyl)sulfosuccinate (AOT). However, the dependence of the extraction efficiency on the concentration of an aqueous electrolyte (KCl) could be explained not by the effect of the interfacial potential, but by the change in the interfacial tension (gamma). Electrocapillary measurements showed that the adsorption of AOT anions to the O/W interface resulted in a significant decrease of gamma in a higher potential range, where reverse micelles were formed. The bottom level of gamma in the higher potential range was increased with [KCl]. The lower extraction efficiency for higher [KCl]'s was elucidated by a "size exclusion effect". This was also supported by water-content measurements by the Karl Fisher method.  相似文献   

2.
本文采用电化学技术,研究了细胞色素c(Cyt c)在玻璃微米管尖端处形成的微-水/1,2-二氯乙烷(W/DCE)界面上的电化学行为.选用四丁基铵四苯硼(TBAT-PB)、四丁基铵四氯代苯硼(TBATPBCl)以及四丁基铵四氟代苯硼(TBATPBF)三种不同的有机相支持电解质来研究Cyt c在W/DCE界面上的反应.在电势窗较窄的含TBATPB体系中只能够观察到吸附过程;在电势窗较宽的含TBATPBCl和TBATPBF的体系中,可以同时观察到吸附与离子转移过程.当Cyt c浓度较低时,两种过程都可以观察到;当Cyt c浓度较高时,主要是吸附.文中对这些过程的机理进行了探讨.  相似文献   

3.
反胶团相转移法提纯酵母脂肪酶   总被引:1,自引:0,他引:1  
反胶团相转移法是80年代兴起的一种新型分离技术,它利用表面活性剂分子在有机溶剂中自发形成的反向胶团(反胶团),在一定条件下将水溶性蛋白质分子增溶进反胶团的极性核(水池)中,再创造条件将蛋白质抽提至另一水相,实现蛋白质的相转移,达到分离和提纯蛋白质的目的[1].反胶团中的蛋白质分子受到周围水分子和表面活性剂极性头的保护,仍保持一定的活性,甚至表现出超活性[2].由于蛋白质增溶于反胶团与蛋白质所带电荷及反胶团内表面电荷间的静电作用及反胶团的大小有关[3~5],因而表面活性剂的种类、水溶液的PH值及离子强度等因素…  相似文献   

4.
Properties of the ground and excited states of methylene blue (MB) were studied in negatively charged vesicles, normal and reverse micelles and sodium chloride solutions. All these systems induce dimer formation as attested by the appearance of the dimer band in the absorption spectra (lamdaD approximately 600 nm). In reverse micelles the dimerization constant (KD) corrected for the aqueous pseudophase volume fraction is two-three orders of magnitude smaller than KD of MB in water, and it does not change when W0 is increased from 0.5 to 10. Differences in the fluorescence intensity as a function of dimer-monomer ratio as well as in the resonance light scattering spectra indicate that distinct types of dimers are induced in sodium dodecyl sulfate (SDS) micelles and aerosol-OT (sodium dioctyl sulfoxinate, AOT) reversed micelles. The properties of the photoinduced transient species of MB in these systems were studied by time-resolved near infrared (NIR) emission (efficiency of singlet oxygen generation), by laser flash photolysis (transient spectra, yield and decay rate of triplets) and by thermal lensing (amount of heat deposited in the medium). The competition between electron transfer (dye*-dye) and energy transfer (dye*-O2) reactions was accessed as a function of the dimer-monomer ratio. The lower yield of electron transfer observed for dimers in AOT reverse micelles and intact vesicles compared with SDS micelles and frozen vesicles at similar dimer-monomer ratios is related with the different types of aggregates induced by each interface.  相似文献   

5.
6-Propionyl-2-(N,N-dimethyl)aminonaphtahalene, PRODAN, is widely used as a fluorescent molecular probe due to its significant Stokes shift in polar solvents. It is an aromatic compound with intramolecular charge-transfer (ICT) states which can be particularly useful as sensors. In this work, we performed absorption, steady-state, time-resolved fluorescence (TRES), and time-resolved area normalized emission (TRANES) spectroscopies on PRODAN dissolved in nonaqueous reverse micelles. The reverse micelles are composed of polar solvents/sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT)/n-heptane. Sequestered polar solvents included ethylene glycol (EG), propylene glycol (PG), glycerol (GY), formamide (FA), dimethylformamide (DMF), and dimethylacetamide (DMA). The experiments were performed with varying surfactant concentrations at a fixed molar ratio W(S) = [polar solvent]/[AOT]. In every reverse micelle studied, the results show that PRODAN undergoes a partition process between the external solvent and the reverse micelle interface. The partition constants, K(p), are quantified from the changes in the PRODAN emission and/or absorption spectra with the surfactant concentration. The K(p) values depend strongly on the encapsulated polar solvent and correlate quite well with the AOT reverse micelle interface's zones where PRODAN can exist and emits. Thus, the partition toward the reverse micelle interface is strongly favored in DMF and DMA containing micelles where the PRODAN emission comes only from an ICT state. For GY/AOT reverse micelles, the K(p) value is the lowest and only emission from the local excited (LE) state is observed. On the other hand, for EG/AOT, PG/AOT, and water/AOT reverse micelles, the K(p) values are practically the same and emission from both states (LE and ICT) is simultaneously detected. We show here that it is possible to control the PRODAN state emission by simply changing the properties of the AOT reverse micelle interfaces by choosing the appropriate polar solvent to make the reverse micelle media. Indeed, we present experimental evidence with the answer to the long time question about from which state does PRODAN emit, a process that can be controlled using the unique reverse micelle interfaces properties.  相似文献   

6.
Photoinduced intramolecular charge transfer (ICT) of p-N,N-dimethylaminobenzoic acid (DMABOA) in AOT/cyclohexane/H2O reverse micelle was investigated and compared with that in CTAB/1-heptanol/H2O reverse micelle. It is proposed that the DMABOA molecule exists at the AOT reverse micelle water pool interface with its carboxylic group heading toward the water pool while the dimethylaminophenyl moiety buried in the micellar phase. Dual fluorescence of DMABOA that is indicative of the ICT reaction in the excited state was observed over the investigated water pool size, W of 3-17, in the AOT reverse micelle. The ICT emission of DMABOA in the AOT reverse micelle-water pool interface was found to be much weaker than that in the CTAB reverse micelle-water pool interface, and was attributed to the parallel direction of the electric field at the AOT reverse micelle-water pool interface to the charge transfer.  相似文献   

7.
Kinetics of the reduction of 3-chloroacetophenone (CAF) with sodium borohydride (NaBH(4)) were followed by UV-vis spectroscopy at 27.0 degrees C in different reverse micellar media, toluene/BHDC/water and toluene/AOT/water, and compared with results in an isooctane/AOT/water reverse micellar system. AOT is sodium 1,4-bis-2-ethylhexylsulfosuccinate, and BHDC is benzyl-n-hexadecyl dimethylammonium chloride. The kinetic profiles were investigated as a function of variables such as surfactant and NaBH(4) concentration and the amount of water dispersed in the reverse micelles, W(0) = [H(2)O]/[surfactant]. In all cases, the first-order rate constant, k(obs), increases with the concentration of surfactant as a consequence of incorporating the substrate into the interface of the reverse micelles where the reaction takes place. The reaction is faster at the cationic interface than at the anionic one probably because the negative ion BH(4)(-) is part of the cationic interface. The effect of the external solvent on the reaction shows that reduction is favored in the isooctane/AOT/water reverse micellar system than that with an aromatic solvent. This is probably due to BH(4)(-) being more in the water pool of the toluene/AOT/water reverse micellar system. The kinetic profile upon water addition depends largely on the type of interface. In the BHDC system, k(obs) increases with W(0) in the whole range studied while in AOT the kinetic profile has a maximum at W(0) approximately 5, probably reflecting the fact that BH(4)(-) is part of the cationic interface while, in the anionic one, there is a strong interaction between water and the polar headgroup of AOT below W(0) = 5 and, above that, BH(4)(-) is repelled from the interface once the water pool has formed. Application of a kinetic model based on the pseudophase formalism, which considers the distribution of the ketone between the continuous medium and the interface and assumes that reaction takes place only at the interface, has enabled us to estimate rate constants at the interface of the reverse micellar systems. At W(0) < 10, it was considered that NaBH(4) is wholly at the interface and, at W(0) >/= 10, where there are free water molecules, also the partitioning between the interface and the water pool was taken into account. The results were used to evaluate CAF and NaBH(4) distribution constants between the different pseudophases as well as the second-order reaction rate constant of the reduction reaction in the micellar interface.  相似文献   

8.
IntroductionIon transfer across a liquid/liquid( L/L) inter-face or an interface between two immiscible elec-trolyte solutions( ITIES) plays a significant role inmany biochemical fields and technological systemsfrom biological membrane and drug delivery to ex-traction process and chemical sensors[1] . Theminiaturization of ITIESwas firstachieved by Tay-lor and Girault via supporting the interface at thetip of a micropipette in1 986[2 ] .Later on a nano-ITIES supported at a nanopipette …  相似文献   

9.
The higher order structure of proteins solubilized in an bis(2-ethylhexyl) sulfosuccinate sodium (AOT) reverse micellar system was investigated. From circular dichroic (CD) measurement, CD spectra of cytochrome c, which is solubilized at the interface of reverse micelles, markedly changed on going from buffer solution to the reverse micellar solution, and the ellipticity values in the far- and near-UV regions decreased with decreasing the water content (W0: molar ratio of water to AOT), indicating that the secondary and tertiary structures of cytochrome c changed with the water content. The ellipticity of ribonuclease A, which is solubilized in the center of micellar water pool, in the near-UV region was dependent on W0 and became minimum when W0 of ca. 8 while the ellipticity in the far-UV region was almost constant, indicating that the tertiary structure of ribonuclease A was affected by the water content, but the secondary structure was conserved. The degree of curvature of the micellar interface appears to influence the protein structure because the reverse micelle size is linearly proportional to the W0 value. As evidence of this, when the micelle size was comparable to the protein's dimensions, the structures were more affected by the water content. Judging from the dependence of the factor influencing the protein structure on the protein species, the location of solubilized protein in reverse micelles is significantly related to whether the protein structure in the system is affected by the micellar interface. In the cases of cytochrome c and lysozyme, the ellipticity against W0 was dependent on the AOT concentration. In contrast, ribonuclease A gave very similar ellipticity values whatever the AOT concentration. In the n-hexane micellar system, cytochrome c exhibited lower ellipticity values and ribonuclease A in the lower W0 range (W0 < ca. 8) higher ellipticity values. These results indicated that the interaction between the protein and the micellar interface is a dominant factor influencing the protein structure in reverse micelles, and that it is governed by the location of solubilized proteins and the state of the micellar interface.  相似文献   

10.
The reverse micellar system of sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane was used for the extraction and primary purification of beta-galactosidase (EC 3.2.1.23) from the aqueous extract of barley (Hordeum vulgare) for the first time. The process parameters such as the concentration of the surfactant, the volume of the sample injected, and its protein concentration, pH, and ionic strength of the initial aqueous phase for forward extraction, buffer pH, and salt concentration for back extraction are varied to optimize the extraction efficiency. Studies carried out with both phase transfer and injection mode of reverse micellar extraction confirmed the injection mode to be more suitable for beta-galactosidase extraction. The extent of reverse micellar solubilization of proteins increased with an increase in protein concentration of the feed sample. However, back extraction efficiency remained almost constant (13-14.4%), which indicates the selectivity of AOT reverse micelles for a particular protein under given experimental conditions. beta-Galactosidase was extracted with an activity recovery of 98.74% and a degree of purification of 7.2-fold.  相似文献   

11.
反胶束是两亲分子在非极性溶剂中形成的一种有序组合体,在医药、化工、采油、胶束催化及酶催化等领域中有重要应用.与胶束溶液相比,人们对反胶束的形成与结构的了解至今仍不充分.特别是对于由混合表面活性剂形成的反胶束的研究几乎无人涉及.本文采用动态光散射、电导及荧光光谱等手段对阴离子表面活性剂AOT与非离子表面活性剂形成的混合反胶束进行了研究,旨在探讨利用表面活性剂的复配来调节和控制反胶束的结构和性能.亚实验部分二异辛基磺化琉璃酸钠(AOT,Sigma公司);Brij30为含4个氧乙烯基(EO基)的十二碳醇(AcrosOrgani…  相似文献   

12.
The effect of compressed CO2 on the solubilization of bovine serum albumin (BSA) in water/sodium bis-(2-ethylhexyl) sulfosuccinate (AOT)/isooctane reverse micelles was studied by observing phase behavior and recording UV-visible spectra under different conditions. The pH values within the water cores of reverse micelles at different CO2 pressures were also determined. The solubilization capacity of the reverse micelles for the protein increased considerably as CO2 pressure increased within the low-pressure range, but decreased at higher CO2 pressures, so that the micelles eventually lost their ability to solubilize the protein. The effect of CO2 on the stability of the reverse micelles played an important role in the relationship between pressure and protein solubility. A "multicomplex" model was proposed to explain these effects. The different solublization capacities within different pressure ranges demonstrates the unique advantage of using compressed CO2 in the extraction of proteins with reverse micelles.  相似文献   

13.
Moderate yields of benzaldehyde, benzyl alcohol and benzylamine are obtained by the biomimetic oxidation of N-nitrosodibenzylamine with molecular oxygen catalysed by water soluble anionic manganese(III) 5,10,15,20-tetraphenylporphyrin acetate/sodium dithionite/methylene blue in aerosol-OT (AOT) reverse micelles, under phase transfer conditions with AOT concentration higher than 10−3M. The formation of α-hydroxy-N-nitrosodibenzylamine and its decomposition products, benzaldehyde and benzyl alcohol in reverse micellar systems are governed by the ratio of water and AOT, pH and other changes in the microenvirpnment.  相似文献   

14.
The refolding kinetics of the reduced, denatured hen egg white lysozyme in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)-isooctane-water reverse micelles at different water-to-surfactant molar ratios has been investigated by fluorescence spectroscopy and UV spectroscopy. The oxidative refolding of the confined lysozyme is biphasic in AOT reverse micelles. When the water-to-surfactant molar ratio (omega 0) is 12.6, the relative activity of encapsulated lysozyme after refolding for 24 h in AOT reverse micelles increases 46% compared with that in bulk water. Furthermore, aggregation of lysozyme at a higher concentration (0.2 mM) in AOT reverse micelles at omega 0 of 6.3 or 12.6 is not observed; in contrast, the oxidative refolding of lysozyme in bulk water must be at a lower protein concentration (5 microM) in order to avoid a serious aggregation of the protein. For comparison, we have also investigated the effect of AOT on lysozyme activity and found that the residual activity of lysozyme decreases with increasing the concentration of AOT from 1 to 5 mM. When AOT concentration is larger than 2 mM, lysozyme is almost completely inactivated by AOT and most of lysozyme activity is lost. Together, our data demonstrate that AOT reverse micelles with suitable water-to-surfactant molar ratios are favorable to the oxidative refolding of reduced, denatured lysozyme at a higher concentration, compared with bulk water.  相似文献   

15.
A pH-sensitive polymer interface has been used as a matrix for reversible immobilization of cytochrome c (Cyt c) on an Au surface through a dip-coating process. The pH-sensitive behavior of the polymer brush interface has been demonstrated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements. The reversible immobilization and electron-transfer properties of Cyt c have been investigated by in situ UV/Vis spectrophotometry and CV. The results have shown that the poly(acrylic acid) (PAA) brush acted as an excellent adsorption matrix and a good accelerant for the direct electron transfer of Cyt c, which gave redox peaks with a formal potential of 40 mV versus Ag/AgCl in pH 7.6 phosphate buffer solution. The average surface coverage of Cyt c on the PAA film was about 1.7 x 10(-10) mol cm(-2), indicating a multilayer of Cyt c. The electron-transfer rate constant was calculated to be around 0.19 s(-1) according to the CV experiments. The interface was subjected to in situ attenuated total internal reflection Fourier-transform infrared (ATR-FTIR) spectroscopic analysis, in order to further confirm the immobilization of Cyt c on the surface. This polymer-protein system may have potential applications in the design of biosensors, protein separation, interfacial engineering, biomimetics, and so on.  相似文献   

16.
We found that the absorption spectra of 2-acetylphenol (2-HAP), 4-acetylphenol (4-HAP), and p-nitrophenol (p-NPh) in water/sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane reverse micelles (RMs) at various W(0) (W(0) = [H(2)O]/[surfactant]) values studied changed with time if (-)OH ions were present in the RM water pool. There is an evolution of ionized phenol (phenolate) bands to nonionized phenol absorption bands with time and this process is faster at low W(0) values and with phenols with higher bulk water pK(a) values. That is, in bulk water and at the hydroxide anion concentration used, only phenolate species are observed, whereas in AOT RMs at this fixed hydroxide anion concentration, ionized phenols convert into nonionized phenol species over time. Furthermore, we demonstrate that, independent of the (-)OH concentration used to prepare the AOT RMs, the nonionized phenols are the more stable species in the RM media. We explain our results by considering that strong hydrogen-bonding interactions between phenols and the AOT polar head groups result in the existence of only nonionized phenols at the AOT RM interface. The situation is quite different when the phenols are dissolved in cationic benzyl-n-hexadecyldimethylammonium chloride RMs. Therein, only phenolates species are present at the (-)OH concentrations used. The results clearly demonstrate that the classical definition of pH does not apply in a confined environment, such as in the interior of RMs and challenge the general idea that pH can be determined inside RMs.  相似文献   

17.
The effects of compressed CO(2) in sodium bis-2-ethylhexylsulfosuccinate (AOT)/decane reversed micellar solution on the stability of the micelles, interface, and micelle/micelle interactions were studied. It was demonstrated that the compressed gas could increase the solubilization of water in this system. The formation of the stabilized one-phase microemulsion was confirmed by conductivity measurements. A shift in percolation threshold to higher temperature was observed after compressed gas was added. The gyration radius (R(g)) of the reverse micelles was determined using SAXS. R(g) increases with the addition of water, while it decreases appreciably with increasing pressure of compressed gas at fixed W(0). These results were interpreted in terms of an increase of the rigidity of the interface layer and a decrease of the interdroplet attraction. The results of this work provide useful information to get insight into the mechanism of cosurfactants to stabilize reverse micelles.  相似文献   

18.
Park LC  Maruyama T  Goto M 《The Analyst》2003,128(2):161-165
DNA hybridization was investigated in AOT (sodium di-2-ethylhexyl sulfosuccinate)/isooctane reverse micelles. The single-stranded DNA molecules were encapsulated in the nanoscale water pools formed in the reverse micelles, reducing the hybridization rate. The DNA hybridization can be monitored by simply measuring the UV absorbance of the reverse micellar solution at 260 nm. We found that the DNA hybridization occurred only at the restricted water content (Wo = [H2O]/[AOT] = 20) and below room temperature. We applied this DNA hybridization behavior in reverse micelles to mutation detection in a model gene p53 and successfully detected the single nucleotide mutations in 20-mer. 30-mer and 50-mer nucleotides without a DNA labeling.  相似文献   

19.
The activity and stability of Chromobacterium viscosum lipase (glycerolester hydrolase, EC 3.1.1.3)-catalyzed olive oil hydrolysis in sodium bis (2-ethyl-1-hexyl)sulfosuccinate (AOT)/isooctane reverse micelles is increased appreciably when low molecular weight polyethylene glycol (PEG 400) is added to the reverse micelles. To understand the effect of PEG 400 on the phase behavior of the reverse micellar system, the phase diagram of AOT/PEG 400/water/isooctane system was studied. The influences of relevant parameters on the catalytic activity in AOT/PEG 400 reverse micelles were investigated and compared with the results in the simple AOT reverse micelles. In the presence of PEG 400, the linear decreasing trend of the lipase activity with AOT concentration, which is observed in the simple AOT reverse micelles, disappeared. Enzyme entrapped in AOT/PEG reverse micelles was very stable, retaining>75% of its initial activity after 60 d, whereas the half-life in simple AOT reverse micelles was 38 d. The kinetics parameter maximum velocity (V max)exhibiting the temperature dependence and the activation energy obtained by Arrhenius plot was suppressed significantly by the addition of PEG 400.  相似文献   

20.
We explore the interactions of VIII‐, VIV‐, and VV‐2,6‐pyridinedicarboxylic acid (dipic) complexes with model membrane systems and whether these interactions correlate with the blood‐glucose‐lowering effects of these compounds on STZ‐induced diabetic rats. Two model systems, dipalmitoylphosphatidylcholine (DPPC) Langmuir monolayers and AOT (sodium bis(2‐ethylhexyl)sulfosuccinate) reverse micelles present controlled environments for the systematic study of these vanadium complexes interacting with self‐assembled lipids. Results from the Langmuir monolayer studies show that vanadium complexes in all three oxidation states interact with the DPPC monolayer; the VIII–phospholipid interactions result in a slight decrease in DPPC molecular area, whereas VIV and VV–phospholipid interactions appear to increase the DPPC molecular area, an observation consistent with penetration into the interface of this complex. Investigations also examined the interactions of VIII‐ and VIV‐dipic complexes with polar interfaces in AOT reverse micelles. Electron paramagnetic resonance spectroscopic studies of VIV complexes in reverse micelles indicate that the neutral and smaller 1:1 VIV‐dipic complex penetrates the interface, whereas the larger 1:2 VIV complex does not. UV/Vis spectroscopy studies of the anionic VIII‐dipic complex show only minor interactions. These results are in contrast to behavior of the VV‐dipic complex, [VO2(dipic)]?, which penetrates the AOT/isooctane reverse micellar interface. These model membrane studies indicate that VIII‐, VIV‐, and VV‐dipic complexes interact with and penetrate the lipid interfaces differently, an effect that agrees with the compounds’ efficacy at lowering elevated blood glucose levels in diabetic rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号