首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminas thermally and/or chemically treated were used as support for Cp2ZrCl2 and evaluated in ethylene polymerization at constant reaction conditions. Two different calcination temperatures were employed, and the metallocene was fixed either directly or after support pretreatment with MAO, TMA, or NaOH solutions. The obtained alumina‐supported catalysts showed activities comparable to the homogeneous precursor. It was noticed that the textural properties of the supports strongly influenced the catalyst performance. The direct fixation of the metallocene on alumina produced catalysts presenting lower activities in comparison to the ones obtained from the chemically treated supports. The chemical pretreatment of hydrated alumina with TMA originated catalysts whose activities were superior to those obtained by pretreatment with MAO. The pretreatment with NaOH produced the more active catalyst and generated branched polymer. The molecular weight of the PE produced by the supported catalysts was higher than the ones obtained with the homogeneous system. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 9–21, 2004  相似文献   

2.
New double silylene‐bridged binuclear zirconium complexes [(η5‐RC5H4)ZrCl2]2[μ,μ‐(SiMe2)25‐C5H3)2] [R = H ( 1 ), Me ( 2 ), nPr ( 3 ), iPr ( 4 ), nBu ( 5 ), allyl ( 6 ), 3‐butenyl ( 7 ), benzyl ( 8 ), PhCH2CH2 ( 9 ), MeOCH2CH2 ( 10 )] were synthesized by the reaction of (η5‐RC5H4)ZrCl3·DME with [μ,μ‐(SiMe2)25‐C5H3)2]2? ( L2? ) in THF, and they were all well characterized by 1H NMR, MS, IR, and EA. The binuclear structure of Complex 3 was further confirmed by X‐ray diffraction, where the two zirconium centers are located trans relative to the bridging [μ,μ‐(SiMe2)25‐C5H3)2] moiety. When activated with methylaluminoxane (MAO), this series of zirconium complexes are highly active catalysts for the polymerization of ethylene even under very low molar ratio of Al/Zr (Complex 7 , 5.41 × 105 g‐PE/mol‐Zr·h, Al/Zr = 50) and linear polyethylenes (PEs) with broad molecular weight distribution (MWD, Mw/Mn = 7.31–27.6) was obtained. The copolymerization experiments indicate that these complexes are also very efficient in the incorporation of 1‐hexene into the growing PE chain in the presence of MAO (Complex 6 , 3.59 × 106 g‐PE/mol‐Zr·h; 1‐hexene content, 3.65%). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4901–4913, 2007  相似文献   

3.
We report the synthesis of a supported metallocene catalyst that exhibits the same activity as a homogeneous catalyst for ethylene polymerization reactions. The key to this new catalytic system is a hybrid organic–inorganic polymer obtained by the cocondensation of an organotrialkoxysilane (OTAS; 40 mol %) with tetraethoxysilane (TEOS; 60 mol %). The particular organic group of OTAS enabled us to avoid gelation when the hydrolytic condensation was performed with a thermal cycle attaining 150 °C. The resulting product [soluble functionalized silica (SFS)] was a glass at room temperature that was soluble in several organic solvents such as tetrahydrofuran and toluene. The 29Si NMR spectrum of SFS showed that the OTAS units were fully condensed (T3 species), whereas the TEOS units were mainly present as tricondensed (Q3) and tetracondensed (Q4) units. SFS was grafted onto activated silica through a reaction of silanol groups. The metallocene [(nBuCp)2ZrCl2] was covalently bonded to the SFS‐modified support. The polymerization of ethylene was carried out in toluene in the presence of methylaluminoxane. The activity of the supported catalyst was similar to that of the metallocene catalyst in solution. The simplest explanation accounting for this fact is that most of the metallocene was grafted to SFS species issuing from the surface of the support through a reaction with their silanol groups. This improved the accessibility of the monomer to the reaction sites. Specific interactions of the metallocene species with neighboring organic branches of SFS might also affect the catalytic activity. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5480–5486, 2007  相似文献   

4.
Polyethylene‐block‐poly(methyl methacrylate) (PE‐b‐PMMA) was successfully synthesized through the combination of metallocene catalysis with living radical polymerization. Terminally hydroxylated polyethylene, prepared by ethylene/allyl alcohol copolymerization with a specific zirconium metallocene/methylaluminoxane/triethylaluminum catalyst system, was treated with 2‐bromoisobutyryl bromide to produce terminally esterified polyethylene (PE‐Br). With the resulting PE‐Br as an initiator for transition‐metal‐mediated living radical polymerization, methyl methacrylate polymerization was subsequently performed with CuBr or RuCl2(PPh3)3 as a catalyst. Then, PE‐b‐PMMA block copolymers of different poly(methyl methacrylate) (PMMA) contents were prepared. Transmission electron microscopy of the obtained block copolymers revealed unique morphological features that depended on the content of the PMMA segment. The block copolymer possessing 75 wt % PMMA contained 50–100‐nm spherical polyethylene lamellae uniformly dispersed in the PMMA matrix. Moreover, the PE‐b‐PMMA block copolymers effectively compatibilized homopolyethylene and homo‐PMMA at a nanometer level. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3965–3973, 2003  相似文献   

5.
C1‐symmetric diastereoisomers of a zirconocene dichloride, SiMe2(3‐benzylindenyl)(indenyl)ZrCl2, known as catalyst precursors used to produce polypropylenes with similar molecular weights and tacticities, have been investigated in ethylene polymerization. Activated by methylaluminoxane, they produce microstructurally different polymers: high‐density polyethylene and linear low‐density polyethylene, the latter characterized by the presence of ethyl branches. The formation of branches is relevant in the complex having a sterically more crowded (inward) site. A comparison with the complex without substituents, meso‐SiMe2(indenyl)2ZrCl2, shows that the presence of a benzyl group on only one of the two indenyl moieties can regulate the number of branches and the molecular weight of the macromolecule. Actually, the unsubstituted complex is able to give double the number of branches and lower molecular weights, whereas the C1‐symmetric disubstituted complexes previously reported generally give linear polyethylene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3551–3555, 2006  相似文献   

6.
The structure of methylaluminoxane (MAO), used as a cocatalyst for olefin polymerization, has been investigated by Raman and in situ IR spectroscopy, polymerization experiments, and density functional calculations. From experimental results, a number of quantum chemical calculations, and bonding properties of related compounds, we have suggested a few Me18Al12O9 cage structures, including a highly regular one with C3h symmetry, which may serve as models for methylaluminoxane solutions. The cages themselves are rigid but may contain up to three bridging methyl groups on the cage surfaces that are labile and reactive. Bridging methyls were substituted with Cl atoms to form a compound otherwise similar to MAO. Chlorinated MAO is unable to activate a metallocene catalyst, even in the presence of trimethylaluminum (TMA), but allows subsequent activation by regular MAO. With bis(pentamethylcyclopentadienyl)zirconium dichloride, MAO and TMA seem to influence chain termination independently. Several findings previously poorly explained are rationalized with the new model, including the observed lack of reaction products with excess TMA. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3106–3127, 2000  相似文献   

7.
8.
9.
Through the Diels–Alder reaction between cyclopentadiene groups attached to polystyrene in the presence of zirconocene, novel polystyrene‐supported metallocene catalysts were prepared. A novel method for immobilizing metallocene catalysts was investigated, and the resultant polystyrene‐supported metallocene for olefin polymerization was studied. The results of olefin polymerization showed that different crosslinking degrees of support in the catalyst system had significant effects on the catalytic behavior. The influence of the [Al]/[Zr] molar ratio and the temperature on the (co)polymerization activity was studied. When 1‐hexene and 1‐dodecene were used for copolymerization with ethylene, an obvious positive comonomer effect was observed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2650–2656, 2005  相似文献   

10.
Commercial zeolite acid mordenite was thermally treated for use as a support for bis(n‐butyl‐cyclopentadienyl)zirconium dichloride [(n‐BuCp)2ZrCl2] for the further evaluation of ethylene/1‐hexene copolymerization. The polymerization time, temperature, and solvent, as well as the addition of tri(isobutyl)aluminum in the hexane medium, were evaluated. The catalytic activity and 1‐hexene content in the copolymer synthesized with the supported system were very near those obtained with the homogeneous precursor. A comonomer effect was observed for both systems. The polymerization rate profiles were obtained for ethylene polymerization, and the activation energy and monomer reactivity were calculated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3038–3048, 2004  相似文献   

11.
Ethylene polymerization was carried out with a novel in‐situ‐supported metallocene catalyst that eliminates the need for a supporting step before polymerization. The influence of the metallocene amount, aluminum to zirconium mole ratio, temperature, pressure, and cocatalyst type on polymerization kinetics and molecular weight distribution of the produced polyethylene was studied. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1803–1810, 2000  相似文献   

12.
新一代高活性后过渡金属烯烃聚合催化剂   总被引:1,自引:0,他引:1  
介绍了近几年发展起来的新一代后期过渡金属(Fe,Co,Ni,Pd)烯烃聚合催化剂,对催化剂的结构、性能及催化烯烃聚合进行了阐述。  相似文献   

13.
A series of imino‐indolate half‐titanocene chlorides, Cp′Ti(L)Cl2 ( C1 – C7 : Cp′ = C5H5, MeC5H4, C5Me5, L = imino‐indolate ligand), were synthesized by the reaction of Cp′TiCl3 with sodium imino‐indolates. All complexes were characterized by elemental analysis, 1H and 13C NMR spectroscopy. Moreover, the molecular structures of two representative complexes C4 and C6 were confirmed by single crystal X‐ray diffraction analysis. On activation with methylaluminoxane (MAO), these complexes showed good catalytic activities for ethylene polymerization (up to 7.68 × 106 g/mol(Ti)·h) and ethylene/1‐hexene copolymerization (up to 8.32 × 106 g/mol(Ti)·h), producing polyolefins with high molecular weights (for polyethylene up to 1808 kg/mol, and for poly(ethylen‐co‐1‐hexene) up to 3290 kg/mol). Half‐titanocenes containing ligands with alkyl substituents showed higher catalytic activities, whereas the half‐titanocenes bearing methyl substituents on the cyclopentadienyl groups showed lower productivities, but produced polymers with higher molecular weights. Moreover, the copolymerization of ethylene and methyl 10‐undecenoate was demonstrated using the C1 /MAO catalytic system. The functionalized polyolefins obtained contained about 1 mol % of methyl 10‐undecenoate units and were fully characterized by several techniques such as FT‐IR, 1H NMR, 13C NMR, DSC, TGA and GPC analyses. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 357–372, 2009  相似文献   

14.
Vinylsilanes CH2CHSiR3 (R = Me, NMe2, OMe, OTMS) copolymerize with ethylene rapidly in the presence of catalytic amounts of [Cp′2ZrMe][MeB(C6F5)3] (Cp′ = η5‐C5Me5) ( I ) to give high molecular weight silyl‐functionalized polyethylene. The molecular weight of the polymer can be controlled by varying the comonomer concentration as well as the reaction temperature. Relatively low molecular weight polymer was produced at a higher silyl monomer concentration and a higher polymerization temperature. The incorporation of silyl monomer in the polymer is in the range of 0.1‐ 6.0%. On the other hands, catalysts [Cp2ZrMe][MeB(C6F5)3] (Cp′ = η5‐C5H5) ( II ) and [Cp″2ZrMe][MeB(C6F5)3] (Cp″ = η5‐1,2‐C5Me2H3) ( III ) show much lower activity. With the use of more coordinatively unsaturated constrained geometry catalysts (CGC), Me2Si(η5‐C5Me4)(NtBu)MMe][MeB(C6F5)3] ( IV , M = Zr; V , M = Ti), the silyl monomer incorporation in the polymer was increased to 40%. The Ti catalyst is more active and produces polymer with a higher molecular weight with a higher silyl monomer incorporation at 23 °C. The copolymerization of vinyltrimethylsilane with propylene was also investigated with these catalysts, yielding high silyl‐functionalized propylene copolymer/oligmer. The microstructure of the copolymers/oligomers has been thoroughly investigated by 1D and 2D NMR techniques (1H, 13C, NOE, DEPT, HETCOR, and FLOCK). The results show that the backbone of the copolymers/oligomers is essentially random. Several termination pathways have been identified. In particular, two unsaturated silyl terminations, cis and/or trans‐TMS CHCH , were identified with the constrained geometry catalysts. Their formation was rationalized based on transition state models. It was found that occasional 1,2‐insertion of either propylene or vinyltrimethylsilane into the chain propagation process has a high probability serving as the trigger for polymer chain termination via β‐H elimination. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1308–1321  相似文献   

15.
Heterogenized activators - “support-H2O/AlR3” (where R=Me, iBu, support=montmorillonite, zeolite), synthesized directly on the support, form with metallocenes metal alkyl complexes highly active in olefin polymerization without the use of commercial methylaluminoxane (MAO). It was shown by the method of temperature programmed desorption with the application of mass-spectrometry (TPD-MS) that the aluminumorganic compound in support-H2O/AlR3 is in general similar to the structure of commercial MAO. The heterogenization of Zr-cenes on support-H2O/AlR3 is accompanied by the appearance of the energy non-uniformity of active sites. The activation energy of thermal destruction of active Zr-C bonds in the active sites of prepared catalysts changes in the range from 25 to 32 kcal/mol.  相似文献   

16.
Metallocene polyethylene (mPE) fractions are recognized as being more homogeneous with respect to short‐chain branch (SCB) distribution as compared with unfractionated mPEs. Differential scanning calorimetry and polarized optical microscopy (POM) were used to study the influences of SCB content on the crystallization kinetics, melting behavior, and crystal morphology of four butyl‐branched mPE fractions. The parent mPE of the studied fractions was also investigated for comparative purposes. mPE fractions showed a much simpler crystallization behavior as compared with their parent mPE during the cooling experiments. The Ozawa equation was successfully used to analyze the nonisothermal crystallization kinetics of the fractions. The Ozawa exponent n decreased from about 3.5 to 2 as the temperature declined for each fraction, indicating the crystal‐growth geometry changed from three‐dimensional to two‐dimensional. For isothermal crystallization, the fraction with a lesser SCB content exhibited a higher crystallization temperature (Tc) window. The results from the Avrami equation analysis showed the exponent n values were around 3 (with minor variation), which implied that the crystal‐growth geometry is pseudo‐three‐dimensional. Both of the activation energies for nonisothermal and isothermal crystallization were determined for each fraction with Kissinger and Arrhenius‐type equations, respectively. Double melting peaks were observed for both nonisothermally or isothermally crystallized specimens. The high‐melting peak was confirmed induced via the annealing effect during heating scans. The Hoffman–Weeks plot was inapplicable in obtaining the equilibrium melting temperature (Tm°) for each fraction. The relationship between Tc and Tm for the fractions is approximately Tm = Tc (°C) + 8.3. The POM results indicated that the crystals of parent or fractions formed under cooling conditions did not exhibit the typical spherulitic morphology as a result of the high SCB content. © 2002 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 325–337, 2002  相似文献   

17.
Heterogeneous polyolefin catalysts based on metallocenium salts of weakly coordinating anions can be prepared via a series of simple reactions from lightly crosslinked chloromethylated polystyrene beads. Catalytic sites are distributed homogeneously throughout the polystyrene particles. The nonporous nature of these catalysts affords a high degree of control over the olefin uptake rate, avoiding problems of premature catalyst fragmentation that often plague high‐surface‐area heterogeneous catalysts based on highly reactive species. The choice of amine as the means of binding or templating allows catalysts based on a wide variety of metallocenes to be readily prepared by the same synthetic approach. The dative interactions between the metallocene cation and the amine functionality of the support material are sufficient to prevent extraction under polymerization conditions to yield excellent particle morphology of the polyolefin product, but they are not so strong as to affect the nature of the polyolefin produced. The polymer‐supported catalysts have been used effectively for the polymerization of ethylene and polypropylene. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2979–2992, 2000  相似文献   

18.
In this work, propylene was polymerized with isospecific and syndiospecific catalysts in homogeneous and heterogeneous systems. The binary metallocene system of both isospecific and syndiospecific catalysts in the heterogeneous system was also used. Besides the type of catalyst, parameters such as polymerization temperature and pressure were varied to achieve the better conditions for the polymerization. The objective of this work is to investigate the influence of these parameters on the characteristics of the produced polymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2979–2986, 2002  相似文献   

19.
20.
Ethylene and 1‐octene copolymerizations were carried out with an in situ supported rac‐[dimethylsilylbis(methylbenzoindenyl)] zirconium dichloride catalyst. In a previous study, it was found that some in situ supported metallocenes produced polyethylene/α‐olefin copolymers with broad and bimodal short chain branching distributions and narrow molecular weight distributions. The ability to produce polyolefins with multimodal microstructural distributions in a single metallocene and a single reactor is attractive for producing polymers with balanced properties with simpler reactor technology. In this study, a factorial experimental design was carried out to examine the effects of the polymerization temperature and ethylene pressure, the presence of hydrogen and an alkylaluminum activator, and the level of the comonomer in the feed on the catalyst activity, short chain branching distribution, and molecular weight distribution of the polymer. The temperature had the most remarkable effect on the polymer microstructure. At high 1‐octene levels, the short chain branching distribution of the copolymer broadened significantly with decreasing temperature. Several factor interactions, including the hydrogen and alkylaluminum concentrations, were also observed, demonstrating the sensitivity of the catalyst to the polymerization conditions. For this catalyst system, the responses to the polymerization conditions are not easily predicted from typical polymerization mechanisms, and several two‐factor interactions seem to play an important role. Given the multiple‐site nature of the catalyst, it has been shown that predicting the polymerization activity and the resulting microstructure of the polymer is a challenging task. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4426–4451, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号