首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the partial substitution of 1,4‐disubstituted cyclohexane monomers for linear aliphatic monomers in polyamides are discussed. More specifically, the relation between the stereochemistry of the cycloaliphatic residues and the thermal properties [melting temperature (Tm) and crystallization temperature (Tcr)] was investigated. For this purpose, two different types of copolyamides were synthesized: in polyamides 12.6, the adipic acid residues were partially replaced by cis/trans‐1,4‐cyclohexanedicarboxylic acid (1,4‐CHDA), whereas in polyamides 4.14, the 1,4‐diaminobutane residues were partially substituted with cis/trans‐1,4‐diaminocyclohexane (1,4‐DACH). For both systems, increasing the degree of substitution of cycloaliphatic residues for linear aliphatic residues resulted in a rise of both Tm and Tcr. This points to the isomorphous crystallization of the linear and cycloaliphatic residues. In contrast to the use of 1,4‐DACH as a comonomer, 1,4‐CHDA residues showed isomerization upon thermal treatment of the polyamides. This isomerization of the cyclohexane residues influenced the thermal properties of the copolyamides. The use of a nonisomerizing cis–trans mixture of 1,4‐DACH exhibited the large influence of the stereochemistry of the cycloaliphatic residues on the Tm of the copolyamides. For both the 1,4‐CHDA‐ and 1,4‐DACH‐based copolyamides, differential scanning calorimetry analysis revealed that recrystallization occurs during melting. This exothermal effect becomes less pronounced with an increasing content of rigid cycloaliphatic residues. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1962–1971, 2002  相似文献   

2.
A series of copolyamides 12.y was synthesized either with y = 6, or 1,4‐cyclohexanedicarboxylic acid (1,4‐CHDA) residue, or a mixture of both. The influence of the synthetic route of 1,4‐CHDA containing polyamides on the obtained cis–trans ratio of the incorporated 1,4‐CHDA was investigated. The use of acid chlorides provided a synthetic route with full control of the cis–trans ratio of the 1,4‐CHDA residue during synthesis, whereas synthesis at elevated pressure and temperature caused isomerization. The content and cis–trans ratio of 1,4‐CHDA in the copolyamides were determined by solution 13C NMR spectroscopy. Increasing the degree of partial substitution of the adipic acid by 1,4‐CHDA resulted in an increase in Tm, even for low molar precentages of 1,4‐CHDA. This phenomenon points to isomorphous crystallization of both the 12.6 and 12.CHDA repeating units. The mps of the synthesized polyamides were independent of the initial cis–trans ratio of 1,4‐CHDA, provided that the samples were annealed at 300 °C before DSC analysis. The polyamides exhibited a different melting pattern depending on the 1,4‐CHDA content. At a low a 1,4‐CHDA content a net exothermic recrystallization occurred during melting, whereas at higher contents of 1,4‐CHDA this recrystallization occurs to a lesser extent, and two separate melting areas are observed. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 833–840, 2001  相似文献   

3.
The network of dicumyl peroxide (DCP)/triallyl cyanurate (TAC) crosslinked cis‐1,4‐polyisoprene was studied by solid‐state NMR techniques such as direct‐polarization (DP), cross‐polarization (CP), and proton T2 experiments. Line broadening and cis/trans isomerization of mobile carbons were observed in the DP experiments. The information on rigid carbons of network structures was observed with the CP technique. Motional heterogeneity was examined by proton T2 relaxation experiments. Decreases in long T2 (T2L) values from the mobile non‐network structures and short T2 (T2S) values from the rigid network structures were observed with an increase in peroxide or coagent concentration. The percentage of T2S in T2 relaxation, which is related to network density, was observed to increase with peroxide and coagent addition. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1417–1423, 2000  相似文献   

4.
A series of poly(butylene terephthalate) copolyesters containing 5‐tert‐butyl isophthalate units up to 50 mol %, as well as the homopolyester entirely made of these units, were prepared by polycondensation from a melt. The microstructure of the copolymers was determined by NMR to be random for the whole range of compositions. The effect exerted by the 5‐tert‐butyl isophthalate units on thermal, tensile, and gas transport properties was evaluated. Both the melting temperature (Tm) and crystallinity were found to decrease steadily with copolymerization, whereas the glass‐transition temperature (Tg) increased and the polyesters became more brittle. Permeability and solubility slightly increased with the content in substituted isophthalic units, whereas the diffusion coefficient remained practically constant. For the homopolyester poly(5‐tert‐butyl isophthalate), all these properties were found to deviate significantly from the general trend displayed by copolyesters, suggesting that a different structure in the solid state is likely adopted in this case. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 92–100, 2005  相似文献   

5.
Poly(methacrylic acid) (PMA) and poly(2‐ethyl‐2‐oxazoline) (PEOZO) are a polyacid/polybase pair capable of forming reversible, pH‐responsive, hydrogen‐bonding complexes stabilized by hydrophobic effects in aqueous media. Linear PMA was modified with long‐chain (number‐average molecular weight: 10,000) PEOZO via statistical coupling reactions in organic media to prepare a series of PMA‐graft‐PEOZO copolymers. Potentiometric titrations revealed that the presence of tethered PEOZO markedly increases the pKa values for PMA‐g‐PEOZO copolymers as compared with simple PMA/PEOZO mixtures at degrees of ionization, α, between 0.0 and 0.1. The dilute‐solution PMA–PEOZO intramolecular association has been probed by monitoring the PEOZO NMR spin–spin (T2) relaxation as a function of pH. Covalently attached PEOZO side chains participate in complexation at higher values of α than untethered PEOZO. Surprisingly, most PEOZO side chains did not take part in hydrogen bonding at low α, and the highest level of PEOZO incorporation induced a decrease in the number of PMA/PEOZO hydrogen bonds. The polymer self‐diffusion as a function of α was measured with dynamic light scattering. At low pH, the copolymers had no charge and they were in a collapsed form. At high pH, the expected conformational expansion of the PMA units was enhanced at moderate levels of PEOZO incorporation. However, the highest PEOZO incorporation induced the onset of intramolecular associations between PEOZO units along the copolymer chains. Low shear rheometry and light scattering measurements were used in conjunction with the T2 NMR measurements to propose a model consistent with the aforementioned behavior. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2520–2533, 2004  相似文献   

6.
A series of hairy‐rod polymers, poly{2,5‐bis[(4‐alkoxyphenyl)oxycarbonyl]styrenes} (P‐OCm, m = 1, 2, 4, 6, 8, 10, 12, 14, 16, and 18) were designed and successfully synthesized via free radical polymerization. The chemical structure of the monomers was confirmed by elemental analysis, 1H NMR and 13C NMR. The molecular characterizations of the polymers were performed with 1H NMR and gel permeation chromatography. The phase structures and transitions of the polymers were investigated by the combination of techniques including differential scanning calorimetry, wide‐angle X‐ray diffraction, polarized optical microscopy, and rheological measurement. The experimental results revealed that the self‐assembly behaviors of P‐OCm changed with the increase in m. First, the P‐OCm (m = 1, 2) showed only a stable liquid crystalline phase above Tg. Second, with the increasing length of alkoxy tails, the P‐OCm (m = 4, 6, 8) presented a re‐entrant isotropic phase above Tg and a liquid crystalline phase at higher temperature. Third, the P‐OCm (m = 10, 12, 14, 16, 18) exhibited an unusual re‐entrant isotropic phase which was separating SmA (in low temperature) and columnar phases (in high temperature). It was the first time that mesogen‐jacketed liquid crystalline polymers formed smectic phase, re‐entrant isotropic phase, and columnar phases in one polymer due to the microphase separation and the driving force of the entropy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
The microstructure of poly(1,3‐pentadiene) synthesized by cationic polymerization of 1,3‐pentadiene with tBuCl/TiCl4 initiating system is analyzed using one‐dimensional‐ and two‐dimensional‐NMR spectroscopy. It is shown that unsaturated part of chain contains only homo and mixed dyads with trans?1,4‐, trans?1,2‐, and cis?1,2‐structures with regular and inverse (head‐to‐head or tail‐to‐tail) enchainment, whereas cis?1,4‐ and 3,4‐units are totally absent. The new quantitative method for the calculation of content of different structural units in poly(1,3‐pentadiene)s based on the comparison of methyl region of 13C NMR spectra of original and hydrogenated polymer is proposed. The signals of tert‐butyl head and chloromethyl end groups are identified in a structure of poly(1,3‐pentadiene) chain and the new approaches for the quantitative calculation of number‐average functionality at the α‐ and ω‐end are proposed. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3297–3307  相似文献   

8.
Half titanocenes (CpCH2CH2O)TiCl2 (1), (CpCH2CH2OCH3)TiCl3 (2), and CpTiCl3 (3), activated by methylaluminoxane (MAO) were tested in copolymerization of ethylene with internal olefins such as cyclopentene. All the catalysts were able to give incorporation of cyclopentene in polyethylene matrix. 13C NMR analysis of obtained copolymers showed that the catalytic systems have low regiospecificity. In fact, in ethylene–cyclopentene copolymers, cyclic olefin inserts with both 1,2 and 1,3‐enchainment. X‐ray powder diffraction analysis of these copolymers confirmed that 1,2 inserted cyclopentene units are excluded from crystalline phase, whereas 1,3‐cyclopentene units are included, giving rise to expansion of unit cell of crystalline polyethylene. Titanium‐based catalysts were investigated also in the copolymerization of ethylene with E and Z‐2‐butene. Only complex (1) was able to give copolymers and 13C NMR analysis of products showed 2‐3, 1‐3, and 1‐2 insertion of 2‐butene. Differential scanning calorimetry analysis displayed that ethylene–cyclopentene, as well as ethylene‐2‐butene, copolymers are crystalline and their melting point decreases by increasing the comonomer content. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4725–4733, 2008  相似文献   

9.
This article establishes the processing–microstructure–motion–property relationship of high‐speed melt‐spun nylon‐6 fibers. From solid‐state 1H NMR T (spin–lattice relaxation time in the rotating frame) relaxation studies, all nylon‐6 fibers spun at 4500–6100 m/min showed three‐component exponential decay with the time constants T1ρ,I, T1ρ,II, and T1ρ,III, indicating that there existed three different motional phases. These phases were assigned to immobile crystalline, intermediate rigid amorphous, and mobile amorphous regions. The determination of the correlation time (τc) of the respective phases provided information about the local molecular mobility of each phase with respect to the spinning speed. As the spinning speed increased, τc of the crystalline region increased (4500–5200 m/min) and then reached a plateau. However, τc for the rigid amorphous region increased from 5200 m/min onward, indicating that the rigid amorphous chains were more oriented and constrained in the spinning speed range of 5500–6100 m/min. The drastic increase of the maximum thermal stress for all fibers from 5500 to 6100 m/min was coincident with the τc characteristics of the rigid amorphous region. The significant increase in tenacity and Young's modulus and the large decrease in elongation at break at 5500–6100 m/min were also in good agreement with the local molecular motion of the intermediate rigid amorphous phase in the nylon‐6 fibers. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 993–1000, 2001  相似文献   

10.
Copolyamides based on polyamide‐6,6 (PA‐6,6) were prepared by solid‐state modification (SSM). Para‐ and meta‐xylylenediamine were successfully incorporated into the aliphatic PA‐6,6 backbone at 200 and 230 °C under an inert gas flow. In the initial stage of the SSM below the melting temperature of PA‐6,6, a decrease of the molecular weight was observed due to chain scission, followed by a built up of the molecular weight and incorporation of the comonomer by postcondensation during the next stage. When the solid‐state copolymerization was continued for a sufficiently long time, the starting PA‐6,6 molecular weight was regained. The incorporation of the comonomer into the PA‐6,6 main chain was confirmed by size exclusion chromatography (SEC) with ultraviolet detection, which showed the presence of aromatic moieties in the final high‐molecular weight SSM product. The occurrence of the transamidation reaction was also proven by 1H nuclear magnetic resonance (NMR) spectroscopy. As the transamidation was limited to the amorphous phase, this SSM resulted in a nonrandom overall structure of the PA copolymer as shown by the degree of randomness determined using 13C NMR spectroscopy. The thermal properties of the SSM products were compared with melt‐synthesized copolyamides of similar chemical composition. The higher melting and higher crystallization temperatures of the solid state‐modified copolyamides confirmed their nonrandom, block‐like chemical microstructure, whereas the melt‐synthesized copolyamides were random. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5118–5129  相似文献   

11.
Blends of poly(acrylic acid) (PAA) and poly(p‐vinylphenol) (PVPh) were prepared from N,N‐dimethylformamide (DMF) and ethanol solutions. The DMF‐cast blends exhibited single Tg's, as shown by modulated differential scanning calorimetry, whereas the ethanol‐cast blends had double Tg's. Fourier transform infrared spectroscopy showed that there was a specific interaction between PAA and PVPh in the DMF‐cast blends. The single‐Tg blends cast from DMF showed single‐exponential decay behavior for the proton spin–lattice relaxation in both the laboratory frame and the rotating frame, indicating that the two polymers mixed intimately on a scale of 2–3 nm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 789–796, 2003  相似文献   

12.
To further extend temperature range of application and low temperature performance of the ethylene‐styrene copolymers, a series of poly(ethylene‐styrene‐propylene) samples with varying monomer compositions and relatively low glass‐transition temperatures (Tg = −28 – 22 °C) were synthesized by Me2Si(Me4Cp)(N‐t‐Bu)TiCl2/MMAO system. Since the 13C NMR spectra of the terpolymers were complex and some new resonances were present, 2D‐1H/13C heteronuclear single quantum coherence and heteronuclear multiple bond correlation experiments were conducted. A complete 13C NMR characterization of these terpolymers was performed qualitatively and quantitatively, including chemical shifts, triad sequence distributions, and monomer average sequence lengths. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 340–350  相似文献   

13.
14.
Per‐2,3‐acetyl‐β‐cyclodextrin with seven primary hydroxyl groups was synthesized by selective modification and used as multifunctional initiator for the ring‐opening polymerization of ε‐caprolactone (CL). Well‐defined β‐cyclodextrin‐centered seven‐arm star poly(ε‐caprolactone)s (CDSPCLs) with narrow molecular weight distributions (≤1.15) have been successfully prepared in the presence of Sn(Oct)2 at 120 °C. The molecular weight of CDSPCLs was characterized by end group 1H NMR analyses and size‐exclusion chromatography (SEC), which could be well controlled by the molar ratio of the monomer to the initiator. Furthermore, amphiphilic seven‐arm star poly(ε‐caprolactone‐b‐ethylene glycol)s (CDSPCL‐b‐PEGs) were synthesized by the coupling reaction of CDSPCLs with carboxyl‐terminated mPEGs. 1H NMR and SEC analyses confirmed the expected star block structures. Differential scanning calorimetry analyses suggested that the melting temperature (Tm), the crystallization temperature (Tc), and the crystallinity degree (Xc) of CDSPCLs all increased with the increasing of the molecular weight, and were lower than that of the linear poly(ε‐caprolactone). As for CDSPCL‐b‐PEGs, the Tc and Tm of the PCL blocks were significantly influenced by the PEG segments in the copolymers. Moreover, these amphiphilic star block copolymers could self‐assemble into spherical micelles with the particle size ranging from 10 to 40 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6455–6465, 2008  相似文献   

15.
The copolymerization of racemic β‐butyrolactone (rac‐BLMe) with racemic “allyl‐β‐butyrolactone” (rac‐BLallyl) in toluene, catalyzed by the discrete amino‐alkoxy‐bis(phenolate) yttrium‐amido complex 1 , gave new poly(β‐hydroxyalkanoate)s with unsaturated side chains. The poly(BLMeco‐BLallyl) copolymers produced have a highly syndiotactic backbone structure (Pr = 0.80–0.84) with a random enchainment of monomer units, as evidenced by 13C NMR, and high molecular weight (Mn up to 58,000 g mol?1) with a narrow polydispersity (Mw/Mn = 1.07–1.37), as determined by GPC. The comonomer incorporation (5–50 mol % rac‐BLallyl) was a linear function of the feed ratio. The pendant vinyl bond of the side‐chains in those poly(BLMeco‐BLallyl) copolymers allowed the effective introduction of hydroxy or epoxy groups via dihydroxylation, hydroboration‐oxidation or epoxidation reactions. NMR studies indicated that all of these transformations proceed in an essentially quantitative conversion and do not affect the macromolecular architecture. Some thermal properties (Tm, ΔHm, Tg) of the prepared polymers have been also evaluated. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3177–3189, 2009  相似文献   

16.
The (E) isomer in mixtures of (E) and (Z) 1,3‐hexadiene was polymerized with the system CoCl2(PiPrPh2)2‐MAO, a highly active and stereospecific catalyst for the preparation of 1,2 syndiotactic polybutadiene. A new crystalline polymer with a melting point of 109 °C was obtained. The polymer was characterized by IR, NMR (13C, 1H in solution and 13C in the solid‐state), X‐ray diffraction, DSC, GPC and it was found to have a trans‐1,2 syndiotactic structure with a 5.18 ± 0.04 Å fiber periodicity. Since only the (E) isomer was polymerized, at the end of the reaction we were able to separate the (Z) isomer, which was ultimately polymerized with CpTiCl3‐MAO at low temperature, obtaining a low molecular weight, stereoregular polymer that, characterized by IR and NMR methods, was found to exhibit a cis‐1,2 syndiotactic structure, never reported before. Molecular mechanics calculations were carried out on the trans‐1,2 syndiotactic polymer and structural models consistent with the X‐ray diffraction data are proposed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5339–5353, 2007  相似文献   

17.
The radical copolymerization of chlorotrifluoroethylene (CTFE) with 3,3,4,4‐tetrafluoro‐4‐bromobut‐1‐ene (BTFB) initiated by tert‐butylperoxypivalate is presented. The microstructures of the obtained copolymers are determined by means of NMR spectroscopies and elemental analysis and show that random copolymers were obtained. A wide range of poly(CTFE‐co‐BTFB) copolymers is synthesized, containing from 17 to 89 mol % of CTFE. In all the cases, CTFE is the less reactive of both comonomers. Td10% values, ranging from 163 up to 359 °C, are dependent on the BTFB content. These variations of thermal property are attributed to the increase in the number of C‐H and C‐Br bonds breakdown when the BTFB molar percentage in the copolymer is higher. Tg values range from 19 to 39 °C and a decreasing trend is observed when increasing the amount of BTFB in the copolymer. This observation arises from the higher flexibility of the copolymer when increasing the number of fluorobrominated lateral chains. These original fluoropolymers bearing reactive pendant bromo groups are suitable candidates for various applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1714–1720  相似文献   

18.
Copolymers of 2‐methylene‐1,3‐dioxepane (MDO) and methyl acrylate (MA) containing ester units both in the backbone and as pendant groups were synthesized by free‐radical copolymerization. The influence of reaction conditions such as the polymerization time, temperature, initiator concentration, and comonomer feed ratio on the yield, molecular weight, and copolymer composition was investigated. The structure of the copolymers was confirmed by 1H NMR, 13C NMR, and IR spectroscopy. Differential scanning calorimetry indicated that the copolymers had a random structure. An NMR study showed that hydrogen transfer occurred during the copolymerization. The reactivity ratios of the comonomers were rMDO = 0.0235 and rMA = 26.535. The enzymatic degradation of the copolymers obtained was carried out in the presence of proteinase K or a crude enzyme extracted from earthworms. The experimental results showed that the higher ester molar percentage in the backbone caused a faster degradation rate. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2898–2904, 2003  相似文献   

19.
A series of rigid‐rod polyamides and polyimides containing p‐terphenyl or p‐quinquephenyl moieties in backbone as well as naphthyl pendent groups were synthesized from two new aromatic diamines. The polymers were characterized by inherent viscosity, elemental analysis, FT‐IR, 1H‐NMR, 13C‐NMR, X‐ray, differential scanning calorimetry (DSC), thermomechanical analysis (TMA), thermal gravimetric analysis (TGA), isothermal gravimetric analysis, and moisture absorption. All polymers were amorphous and displayed Tg values at 304–337°C. Polyamides dissolved upon heating in polar aprotic solvents containing LiCl as well as CCl3COOH, whereas polyimides were partially soluble in these solvents. No weight loss was observed up to 377–422°C in N2 and 355–397°C in air. The anaerobic char yields were 57–69% at 800°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 15–24, 1999  相似文献   

20.
Stereoblock polybutadiene (PBD) composed of amorphous equibinary cis?1,4/1,2 PBD (e‐PBD, soft) and crystalline syndiotactic 1,2‐PBD (s‐1,2‐PBD, hard) segments is synthesized through one‐pot sequential polymerization with iron(III)2‐ethylhexanoate/triisobutylaluminum/diethyl phosphate [Fe(2‐EHA)3/Al(i‐Bu)3/DEP] catalyst system. The first‐stage polymerization of 1,3‐butadiene (BD) is carried out at a low [Al]/[Fe] ratio to give amorphous e‐PBD block, and sequentially, the in situ addition of excessive Al(i‐Bu)3 and BD to the living polymerization system give rise to a second crystalline s‐1,2‐PBD block. The length of each block is controllable by adjusting cocatalyst and monomer feed ratio. The syndiotactic pentad content is in the range of 63.8–76.6% and increases with the length of s‐1,2‐PBD block. The copolymer exhibits glass transition temperature (Tg) around ?40 °C and melting point (Tm) around 168 °C originating from e‐PBD and s‐1,2‐PBD blocks, respectively. The incompatibility between s‐1,2‐PBD and e‐PBD blocks as well as the crystallization of s‐1,2‐PBD block induce the microphase separation in stereoblock PBD. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1182–1188  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号