首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the polymerization of rhenium‐containing methacrylates by atom transfer radical polymerization. The structure of the monomer was confirmed by X‐ray crystallography, which showed the bulkiness of the metal‐complex moiety. The rhenium complexes were polymerized in the presence of copper(I) bromide, 1,1,4,7,7‐pentamethyldiethylenetriamine, and methyl 2‐bromopropionate. They were copolymerized with methyl methacrylate in different monomer ratios. An ABA triblock copolymer was also synthesized with poly(methyl methacrylate) as the macroinitiator. When 2,2′‐bipyridine was used as the ligand for the copper catalyst in the polymerizations, it underwent a ligand exchange process with the iminopyridine ligand in the monomer. The neutral rhenium complex in the homopolymers and copolymers could be converted into ionic forms by the replacement of the chloride with an imidazole ligand, and the solubility of the resulting ionic polymers was greatly enhanced. The photosensitizing properties of the doped and undoped polymer films were investigated by the measurement of the photocurrent response under an externally applied electric field. The photoconductivities of the polymers were approximately 10?12–10?13 Ω?1 cm?1. The experimental quantum efficiencies were simulated with Onsager's theory, and they showed that the initial quantum yield and thermalization distance were 10?3 and 1.7 nm, respectively. Transmission electron microscopy showed that the rhenium complexes aggregated to form domains with dimensions of approximately 20–30 nm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1292–1308, 2005  相似文献   

2.
Two formulas of grafted polymers with metal‐containing chromophores, potentially suitable for second‐order nonlinear optics applications, are described. Two chromophores were obtained from a tridentate ligand coordinated to Cu(II) or Pd(II) ions. The organometallic chromophore fragments were grafted to poly(4‐vinylpyridine) by the pyridinic nitrogen of the host polymer. Some qualities displayed by the new metallated polymers are remarkable: (1) a high value of the first hyperpolarizability coefficient of the chromophores, (2) a high content of the grafted chromophore in the polymers (up to 60 wt %), (3) a considerable increase in the glass‐transition temperatures (up to 240 °C), (4) good thermal stability in air (ca. 280 °C), and (5) good optical transparency of the films. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2987–2993, 2002  相似文献   

3.
The combination of metals and polymers in hybrid materials is a research area of great current interest. A number of methods for controlling the positioning of metallic species within polymer matrices on the nanometer scale have been developed. This highlight focuses on the use of functional block copolymers for the localization of metal species, especially nanoparticles, on the nanometer scale through block copolymer phase segregation. Research from the author's group on the use of alkyne‐functional block copolymers for the preparation of cobalt‐containing materials is discussed in this context. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4323–4336, 2005  相似文献   

4.
Poly(phenylacetylene)s containing pendant phosphorescent iridium complexes have been synthesized and their electrochemical, photo‐ and electroluminescent properties studied. The polymers have been synthesized by rhodium‐catalyzed copolymerization of 9‐(4‐ethynylphenyl)carbazole (CzPA) and phenylacetylenes (C∧N)2Ir(κ2O,O′‐MeC(O)CHC(O)C6H4C?CH‐4) (C∧N = κ2N,C1‐2‐(pyridin‐2‐yl)phenyl (IrppyPA) or κ2N,C1‐2‐(isoquinolin‐1‐yl)phenyl (IrpiqPA)). In addition, organic poly(phenylacetylene)s with pendant carbazole groups have been synthesized by rhodium‐catalyzed copolymerization of CzPA and 1‐ethynyl‐4‐pentylbenzene. Complex (C∧N)2Ir(κ2O,O′‐MeC(O)CHC(O)Ph) (IrpiqPh; C∧N = 2‐(isoquinolin‐1‐yl)phenyl‐κ2N,C1) was prepared and characterized. While the copolymers of the Irppy series were weakly phosphorescent, those of the Irpiq series displayed at room temperature intense emissions from the carbazole (fluorescence) and iridium (phosphorescence) emitters, being the latter dominant when the spectra were recorded using polymer films. Triple layer OLED devices employing copolymers of the Irpiq series or the model complex IrpiqPh yielded electroluminescence with an emission spectra originating from the iridium complex and maximum external quantum efficiencies of 0.46% and 2.99%, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3744–3757, 2010  相似文献   

5.
Three new polymerizable diols, based on mono‐, di‐, and tri‐O‐allyl‐L ‐arabinitol derivatives, were prepared from L ‐arabinitol as versatile materials for the preparation of tailor‐made polyurethanes with varied degrees of functionalization. Their allyl functional groups can take part in thiol‐ene reactions, to obtain greatly diverse materials. This “click” reaction with 2‐mercaptoethanol was firstly studied on the highly hindered sugar precursor 2,3,4‐tri‐O‐allyl‐1,5‐di‐O‐trityl‐L ‐arabinitol, to apply it later to macromolecules. A polyurethane with multiple pendant allyl groups was synthesized by polyaddition reaction of 2,3,4‐tri‐O‐allyl‐L ‐arabinitol with 1,6‐hexamethylene diisocyanate, and then functionalized by thiol‐ene reaction. The coupling reaction took place in every allyl group, as confirmed by standard techniques. The thermal stability of the novel polyurethanes was investigated by thermogravimetric analysis and differential scanning calorimetry (DSC). This strategy provides a simple and versatile platform for the design of new materials whose functionality can be easily modified. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Histidine functional block copolymers are thermally self‐assembled into polymer micelles with poly‐N‐isopropylacrylamide in the core and the histidine functionality in the corona. The thermally induced self‐assemblies are reversible until treated with Cu2+ ions at 50 °C. Upon treatment with 0.5 equivalents of Cu2+ relative to the histidine moieties, metal‐ion coordination locks the self‐assemblies. The self‐assembly behavior of histidine functional block copolymers is explored at different values of pH using DLS and 1H NMR. Metal‐ion coordination locking of the histidine functional micelles is also explored at different pH values, with stable micelles forming at pH 9, observed by DLS and imaged by atomic force microscopy. The thermal self‐assembly of glycine functional block copolymers at pH 5, 7, and 9 is similar to the histidine functional materials; however, the self‐assemblies do not become stable after the addition of Cu2+, indicating that the imidazole plays a crucial role in metal‐ion coordination that locks the micelles. The reversibility of the histidine‐copper complex locking mechanism is demonstrated by the addition of acid to protonate the imidazole and destabilize the polymer self‐assemblies. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1964–1973  相似文献   

7.
Soluble, fluorescent, terpyridine‐substituted, conjugated polymers were prepared and characterized. The polymer chains included a defined oligo(phenylenevinylene) fragment, on which the terpyridine‐functional group was attached. The polymers were blue‐fluorescent with emission peaks at 400–427 nm in tetrahydrofuran solutions. Upon chelation with the Zn(II) cation, the emission maxima were shifted to a longer wavelength by as much as 113 to 506–526 nm. A model compound was also prepared to aid the structural characterization. The ratio of terpyridine to Zn2+ in the polymer complex was found to be 1:1 on the basis of spectroscopic evidence, which included mass spectrometry, 1H NMR, and Job titration. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2338–2345, 2006  相似文献   

8.
Polyaddition of a kojic acid dimer and diisocyanates yielded polyurethane with metal‐coordination ability owing to the phenolic hydroxyl groups of kojic acid. Although the kojic acid dimer contains two phenolic and two aliphatic hydroxyl groups, 1,5‐diazabicyclo[4.3.0]non‐5‐ene catalyzed polymerization proceeded through highly selective reactions of the aliphatic hydroxyl groups without any protection of the phenolic hydroxyl groups. The resulting polymers complexed with FeCl3, and specific colorizations were observed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Summary: The silver coating of polymers has been intensively investigated in the last few decades as an effective non‐resistance‐inducing strategy to prevent medical device‐related infections. We have developed a completely new approach to incorporate silver ions in polymers by the synthesis of a carboxylated polyurethane able to coordinate Ag+. The obtained polymers possess mechanical properties suitable for the development of medical devices, without any risk of loss of activity. To minimize the risk of increasing antibiotic resistance, the metal ion‐containing polymers are loaded with ciprofloxacin, which possesses a different mechanism of antimicrobial action, thus a system able to inhibit Staphylococcus epidermidis and Pseudomonas aeruginosa growth for at least one month is developed.

SEM images showing a mature S. epidermidis biofilm on the surface of the carboxylated polyurethane (left) and the surface of the silver ion‐containing polyurethane free from bacterial colonization (right) after 48 h of incubation.  相似文献   


10.
Transition metal [M = VO (IV) and/or Cu (II)] complexes with Schiff base ligand, (Z)‐2‐((2‐hydroxybenzylideneamino)phenol (H2L) have been entrapped in the super cages of zeolite‐Y by Flexible Ligand Method. Synthesized materials have been characterized by preferential physico‐chemical techniques such as inductively coupled plasma optical emission spectroscopy (ICP‐OES), elemental analyses (CHN), fourier transmission infrared spectroscopy (FTIR), electronic and UV‐reflectance spectra, Brunauer–Emmett–Teller (BET) surface area measurements, scanning electron micrographs (SEMs), X‐ray diffraction patterns (XRD) and thermogravimetric analysis (TGA). The catalytic competence of zeolite‐Y entrapped transition metal complexes was examined in Baeyer‐Villiger (BV) oxidation of cyclopentanone using 30% H2O2 as an oxidant beside neat complexes to check the aptitude of heterogeneous catalysis over the homogeneous system. The effect of experimental variables such as mole ratio of substrate to an oxidant, amount of catalyst, reaction time, varying oxidants and solvents on the conversion of cyclopentanone was also tested. Under the optimized reaction conditions, one of the zeolite‐Y entrapped transition metal complex viz. [VO(L)H2O]‐Y [where L = (Z)‐2‐((2‐hydroxybenzylideneamino)phenol] was found to be a potential contender by providing 80.22% conversion of cyclopentanone (TON: 10479.42), and the selectivity towards δ‐valerolactone was 83.56%.  相似文献   

11.
A new kind of nano‐chitosan Schiff‐base Cu complexes with particle sizes of 350 nm were prepared by combination of nano‐chitosan, Cu and Schiff‐base, and characterized by FT‐IR spectra, TEM, DLS and elemental analysis. The modes and mechanism of interaction of the copper complexes with DNA were studied by the fluorescent probe method and electrophoresis analysis. The results suggest that the Cu complexes bound to DNA by electrostatic and intercalation modes. The anticancer activity of the Cu complexes was evaluated by Sulforhodamine B (SRB) assay in vitro. Nano‐chitosan and their Schiff‐base Cu complexes inhibited the growth of the liver cancer cell lines SMMC‐7721 in vitro. The inhibition rate of Schiff‐base Cu complexes was higher than that of nano‐chitosan. Nano‐chitosan combining with Schiff‐base and Cu improved their anticancer activity, which ascribed to the synergistic effect between the chitosan matrix and the planar construction of the Cu complexes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
A number of classes of polynorbornenes containing cationic iron moieties within their side chains were prepared via ring‐opening metathesis polymerization with a ruthenium‐based catalyst. The iron‐containing polymers displayed excellent solubility in polar organic solvents. The weight‐average molecular weights of these polymeric materials were estimated to be in the range of 18,000–48,000. Thermogravimetric analysis of these polymers showed two distinct weight losses. The first weight loss was in the range of 204–260 °C and was due to the loss of the metallic moieties, whereas the second weight loss was observed at 368–512 °C and was due to the degradation of the polymer backbone. Cyclic voltammetry studies of the iron‐containing polymers showed that the 18 e? cationic iron centers underwent a reduction to give the neutral 19 e? complexes at half‐wave potential (E1/2) = ?1.105 V. Photolysis of the metallated polymers led to the isolation of the norbornene polymers in very good yields. Differential scanning calorimetry studies showed a sharp increase in the glass‐transition temperatures up to 91 °C when rigid aromatic side chains were incorporated into the norbornene polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3053–3070, 2006  相似文献   

13.
Surface functionalization of CNTs (SWCNTs or MWCNTs) with dendronized alkoxy terpyridine‐Ru(II)‐terpyridine complexes has been accomplished using either the “grafting to” or the “grafting from” approaches. Different sets of easily processable hybrid metallo‐CNTs composites have been efficiently synthesized bearing either monomeric or polymeric side chain tpy‐Ru(II)‐tpy dicomplexes. Their characterization through TGA, UV‐Vis, and Raman techniques revealed various modification degrees depending on the methodology employed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2551–2559, 2009  相似文献   

14.
Well‐defined mono‐ and bifunctional, phenanthroline‐terminated poly(ethylene glycol) and polyisobutylene capable of polymer network formation were synthesized. The starting materials mono‐ and bi‐phenanthroline‐ (phen) terminated poly(ethylene glycols) (mPEG‐phen, phen‐PEG‐phen) and polyisobutylenes (PIB‐phen, phen‐PIB‐phen) were prepared by the Williamson synthesis and characterized by means of 1H NMR and MALDI‐TOF mass spectrometry. According to UV–Vis spectrophotometry and ESI‐TOF mass spectrometry, the phenanthroline‐terminated polymers underwent quantitative complex formation with ferrous ions in solution. The aqueous solution of mPEG‐phen shows self‐assembly behavior. Important parameters, such as critical micelle concentration and hydrodynamic radius of the aggregates were also determined. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2709–2715, 2010  相似文献   

15.
In this article, the preparation of fluorescent nanohybrids with core–shell structure and metal‐enhanced fluorescence (MEF) effect was presented. The fluorescent core–shell nanohybrids were prepared using silver nanoparticles (AgNPs) as cores and fluorophore tethered thermoresponsive copolymers with tunable lower critical solution temperature (LCST) from 15 to 90 °C as shells. These thermoresponsive copolymers were synthesized by the random copolymerization of oligo(ethylene oxide) acrylate and di(ethylene oxide) ethyl ether acrylate using reversible addition–fragmentation chain transfer polymerization and grafted on to AgNPs surface via Ag–S coordination interaction. By thermal manipulation of polymer spacer between AgNPs and fluorophores, the tunable MEF was achieved. It was also revealed that the fluorescent nanohybrids would exhibit maximal MEF when the polymerization degree was tuned to 350. The manipulation of the solution temperatures below and above LCST resulted in switchable MEF behavior. In addition, the phase transition process of the thermoresponsive copolymer was also studied by MEF effect using this fluorescent core–shell nanohybrid design. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 87–95  相似文献   

16.
A detailed crystallization study of the linear n‐polyurethane (n‐PUR) family for n ranging from 5 to 12 was carried out by DSC supported by polarizing optical microscopy. The study embraces crystallization of all the n‐PUR under both nonisothermal and isothermal conditions. The odd and even series of n‐PUR defined by the parity of the number of methylenes (n) contained in the polymer repeating unit are considered and separately analyzed. All the members of the two series showed a thermal behavior consistent with their chemical constitution. Isothermal crystallization data were analyzed by the kinetics Avrami approach which revealed that the “crystallizability” of n‐PUR increases steadily with the flexibility of the polyurethane chain. Melting and enthalpy temperatures of isothermally and nonisothermally crystallized n‐PUR were found to vary with n according to a zig‐zag plot characteristic of odd–even effect. Given the structural similitude of n‐PUR with (n + 2)‐nylons, results were referenced to those reported for this family of polyamides. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1368–1380, 2009  相似文献   

17.
Macrocyclic Schiff‐base ligand, bisacetylaceton‐ethylenediimine (BAE) and its transition metal complexes M(BAE) (M = Cu2+, Ni2+) were synthesized. The complexes having characteristics of aromatic systems and well‐defined one‐dimensional structures, reacted with p‐phthaloyl chloride, to obtain polymer complexes. The complexes were characterized by elemental analysis, inductively coupled plasma (ICP), FT‐IR, and thermal analysis and show good thermal stability. ESR spectra analysis discovered that there are free radicals in the chain of polymers, indicating that a weak magnetic spin‐exchange interaction operates between the metal ions and free radicals. It is found that, as the bridging p‐phthaloyl group is able to propagate the magnetic exchange interaction, the polymer complexes show paramagnetic properties by measurement of temperature dependence of the magnetic property, and obey Curie–Weiss law. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Low‐bandgap rhenium(I) complex with absorption onset at 795 nm in solution was tethered onto π‐conjugated polymer. The conjugated copolymer provides solution processability of the metallopolymer, and the pendant allows the low energy‐absorbing Re(I) complex units to be evenly distributed on the thin film. The copolymer tethered with low‐bandgap rhenium complex was synthesized by Suzuki cross‐coupling reaction. The metal‐free polymer ( poly‐1 ) tethered with functionalized intramolecular charge transfer dye, 2‐phenyl‐3‐pyridin‐2‐yl‐5,7‐di‐2‐thienylthieno[3,4‐b]pyrazine, exhibited high molecular weight, good film‐forming properties, and excellent solution processability. The pendants of the conjugated polymer possess donor–acceptor characters and broaden the absorption band. These pendants can function as bidentate ligands for metal chelation. The solubilizing groups on the monomers provide good solubility to the polymer even with high content of metal chelation. Upon the complexation with rhenium(I) pentacarbonyl chloride, the absorption spectrum of the resulting metallopolymer was further extended toward the near‐infrared region. Photovoltaic performances based on this metallopolymer have been studied. The design approach of these metallopolymers provides synthetic feasibility for coordinating wide range of metal ions on the pendant, and the resulting low‐bandgap polymer can be a potential candidate for light harvesting material in solar cell applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2311–2319, 2010  相似文献   

19.
A new method for the synthesis of hyperbranched polymers involving the use of ABx macromonomers containing linear units have been investigated. Two types of novel hyperbranched polyurethanes have been synthesized by a one‐pot approach. The structures of monomers and polymers were characterized by elemental analysis, 1H NMR, 13C NMR, Fourier transform infrared spectroscopy, gel permeation chromatography, and thermogravimetric analysis. The hyperbranched polymers have been proven to be extremely soluble in a wide range of solvents. Polymer electrolytes were prepared with hyperbranched polymer, linear polymer as the host, and lithium perchlorate (LiClO4) as the ion source. Analysis of the isotherm conductivity dependence of the ion concentration indicated that these hyperbranched polymers could function as a “solvent” for the lithium salt. The conductivity increased with the increasing concentration of hyperbranched polymers in the host polymer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 344–350, 2002  相似文献   

20.
The study of the key parameters impacted surface‐assisted laser desorption/ionization‐mass spectrometry is of broad interest. In previous studies, it has been shown that surface‐assisted laser desorption/ionization‐mass spectrometry is a complex process depending on multiple factors. In the presented study, we showed that neither porosity, light absorbance nor surface hydrophobicity alone influence the enhancement phenomena observed from the hybrid metal‐semiconductor complexes versus individual targets, but small changes in the analyte attaching to the target significantly affect laser desorption ionization‐efficiency. By means of Raman spectroscopy and scanning electron microscopy, it was revealed that the formation of an amorphous analyte layer after drying on a solid substrate was essential for the enhanced laser desorption ionization‐signal observed from the hybrid metal‐semiconductor targets, and the crystallization properties of the analyte appeared as a function of the substrate. Obtained results were used for the screening of regular and lactose‐free milk samples through the hybrid metal‐semiconductor target. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号