首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we consider a variant of the Dual Reciprocity Method (DRM) for solving boundary value problems based on approximating source terms by polynomials other than the traditional basis functions. The use of pseudo‐spectral approximations and symbolic methods enables us to obtain highly accurate results without solving the often ill‐conditioned equations that occur when radial basis function approximations are used. When the given partial differential equation is either Poisson's equation or an inhomogeneous Helmholtz‐type equation, we are able to obtain either closed form particular solutions or efficient recursive algorithms. Using the particular solutions, we convert the inhomogeneous equations to homogeneous. The resulting homogeneous equations are then amenable to solution by boundary‐type methods such as the Boundary Element Method (BEM) or the Method of Fundamental Solutions (MFS). Using the MFS, we provide numerical solutions to a variety of boundary value problems in R2 and R3 . Using this approach, we can achieve high accuracy with a modest number of interpolation and collocation points. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 112–133, 2003  相似文献   

2.
We propose a new moving pseudo‐boundary method of fundamental solutions (MFS) for the determination of the boundary of a void. This problem can be modeled as an inverse boundary value problem for harmonic functions. The algorithm for imaging the interior of the medium also makes use of radial polar parametrization of the unknown void shape in two dimensions. The center of this radial polar parametrization is considered to be unknown. We also include the contraction and dilation factors to be part of the unknowns in the resulting nonlinear least‐squares problem. This approach addresses the major problem of locating the pseudo‐boundary in the MFS in a natural way, because the inverse problem in question is nonlinear anyway. The feasibility of this new method is illustrated by several numerical examples. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

3.
We investigate a meshless method for the accurate and non-oscillatory solution of problems associated with two-dimensional Helmholtz-type equations in the presence of boundary singularities. The governing equation and boundary conditions are approximated by the method of fundamental solutions (MFS). It is well known that the existence of boundary singularities affects adversely the accuracy and convergence of standard numerical methods. The solutions to such problems and/or their corresponding derivatives may have unbounded values in the vicinity of the singularity. This difficulty is overcome by subtracting from the original MFS solution the corresponding singular functions, without an appreciable increase in the computational effort and at the same time keeping the same MFS approximation. Four examples for both the Helmholtz and the modified Helmholtz equations are carefully investigated and the numerical results presented show an excellent performance of the approach developed.  相似文献   

4.
We prove the existence of nontopological N‐vortex solutions for an arbitrary number N of vortex points for the self‐dual Chern‐Simons‐Higgs theory with 't Hooft “periodic” boundary conditions. We use a shadowing‐type lemma to glue together any number of single vortices obtained as a perturbation of a radially symmetric entire solution of the Liouville equation. © 2003 Wiley Periodicals, Inc.  相似文献   

5.
This article is concerned with iterative techniques for linear systems of equations arising from a least squares formulation of boundary value problems. In its classical form, the solution of the least squares method is obtained by solving the traditional normal equation. However, for nonsmooth boundary conditions or in the case of refinement at a selected set of interior points, the matrix associated with the normal equation tends to be ill-conditioned. In this case, the least squares method may be formulated as a Powell multiplier method and the equations solved iteratively. Therein we use and compare two different iterative algorithms. The first algorithm is the preconditioned conjugate gradient method applied to the normal equation, while the second is a new algorithm based on the Powell method and formulated on the stabilized dual problem. The two algorithms are first compared on a one-dimensional problem with poorly conditioned matrices. Results show that, for such problems, the new algorithm gives more accurate results. The new algorithm is then applied to a two-dimensional steady state diffusion problem and a boundary layer problem. A comparison between the least squares method of Bramble and Schatz and the new algorithm demonstrates the ability of the new method to give highly accurate results on the boundary, or at a set of given interior collocation points without the deterioration of the condition number of the matrix. Conditions for convergence of the proposed algorithm are discussed. © 1997 John Wiley & Sons, Inc.  相似文献   

6.
We developed a nonconventional Eulerian‐Lagrangian single‐node collocation method (ELSCM) with piecewise‐cubic Hermite polynomials as basis functions for the numerical simulation to unsteady‐state advection‐diffusion transport partial differential equations. This method greatly reduces the number of unknowns in the conventional collocation method, and generates accurate numerical solutions even if very large time steps are taken. The method is relatively easy to formulate. Numerical experiments are presented to show the strong potential of this method. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 271–283, 2003.  相似文献   

7.
The aim of this paper is to study the metastable properties of the solutions to a hyperbolic relaxation of the classic Cahn‐Hilliard equation in one‐space dimension, subject to either Neumann or Dirichlet boundary conditions. To perform this goal, we make use of an “energy approach," already proposed for various evolution PDEs, including the Allen‐Cahn and the Cahn‐Hilliard equations. In particular, we shall prove that certain solutions maintain a Ntransition layer structure for a very long time, thus proving their metastable dynamics. More precisely, we will show that, for an exponentially long time, such solutions are very close to piecewise constant functions assuming only the minimal points of the potential, with a finitely number of transition layers, which move with an exponentially small velocity.  相似文献   

8.
We consider a mathematical model for thermal analysis in a 3D N‐carrier system with Neumann boundary conditions, which extends the concept of the well‐known parabolic two‐step model for micro heat transfer. To solve numerically the complex system, we first reduce 3D equations in the model to a succession of 1D equations by using the local one‐dimensional (LOD) method. The obtained 1D equations are then solved using a fourth‐order compact finite difference scheme for the interior points and a second‐order combined compact finite difference scheme for the points next to the boundary, so that the Neumann boundary condition can be applied directly without discretizing. By using matrix analysis, the compact LOD scheme is shown to be unconditionally stable. The accuracy of the solution is tested using two numerical examples. Results show that the solutions obtained by the compact LOD finite difference scheme are more accurate than those obtained by a Crank‐Nicholson LOD scheme, and the convergence rate with respect to spatial variables is about 2.6. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

9.
In this paper, the Trefftz method of fundamental solution (FS), called the method of fundamental solution (MFS), is used for biharmonic equations. The bounds of errors are derived for the MFS with Almansi’s fundamental solutions (denoted as the MAFS) in bounded simply connected domains. The exponential and polynomial convergence rates are obtained from highly and finitely smooth solutions, respectively. The stability analysis of the MAFS is also made for circular domains. Numerical experiments are carried out for both smooth and singularity problems. The numerical results coincide with the theoretical analysis made. When the particular solutions satisfying the biharmonic equation can be found, the method of particular solutions (MPS) is always superior to the MFS and the MAFS, based on numerical examples. However, if such singular particular solutions near the singular points do not exist, the local refinement of collocation nodes and the greedy adaptive techniques can be used for seeking better source points. Based on the computed results, the MFS using the greedy adaptive techniques may provide more accurate solutions for singularity problems. Moreover, the numerical solutions by the MAFS with Almansi’s FS are slightly better in accuracy and stability than those by the traditional MFS. Hence, the MAFS with the AFS is recommended for biharmonic equations due to its simplicity.  相似文献   

10.
We developed a nonconventional Eulerian‐Lagrangian single‐node collocation method for transient advection‐diffusion transport partial differential equations in multiple space dimensions. This method greatly reduces the number of unknowns in conventional collocation method, generates accurate numerical solutions, and allows large time steps to be used in numerical simulations. We perform numerical experiments to show the strong potential of the method. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 284–301, 2004  相似文献   

11.
In this article we describe a numerical method to solve a nonhomogeneous diffusion equation with arbitrary geometry by combining the method of fundamental solutions (MFS), the method of particular solutions (MPS), and the eigenfunction expansion method (EEM). This forms a meshless numerical scheme of the MFS‐MPS‐EEM model to solve nonhomogeneous diffusion equations with time‐independent source terms and boundary conditions for any time and any shape. Nonhomogeneous diffusion equation with complex domain can be separated into a Poisson equation and a homogeneous diffusion equation using this model. The Poisson equation is solved by the MFS‐MPS model, in which the compactly supported radial basis functions are adopted for the MPS. On the other hand, utilizing the EEM the diffusion equation is first translated to a Helmholtz equation, which is then solved by the MFS together with the technique of the singular value decomposition (SVD). Since the present meshless method does not need mesh generation, nodal connectivity, or numerical integration, the computational effort and memory storage required are minimal as compared with other numerical schemes. Test results for two 2D diffusion problems show good comparability with the analytical solutions. The proposed algorithm is then extended to solve a problem with irregular domain and the results compare very well with solutions of a finite element scheme. Therefore, the present scheme has been proved to be very promising as a meshfree numerical method to solve nonhomogeneous diffusion equations with time‐independent source terms of any time frame, and for any arbitrary geometry. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

12.
In this paper, the steady‐state Oseen viscous flow equations past a known or unknown obstacle are solved numerically using the method of fundamental solutions (MFS), which is free of meshes, singularities, and numerical integrations. The direct problem is linear and well‐posed, whereas the inverse problem is nonlinear and ill‐posed. For the direct problem, the MFS computations of the fluid flow characteristics (velocity, pressure, drag, and lift coefficients) are in very good agreement with the previously published results obtained using other methods for the Oseen flow past circular and elliptic cylinders, as well as past two circular cylinders. In the inverse obstacle problem the boundary data and the internal measurement of the fluid velocity are minimized using the MATLAB© optimization toolbox lsqnonlin routine. Regularization was found necessary in the case the measured data are contaminated with noise. Numerical results show accurate and stable reconstructions of various star‐shaped obstacles of circular, bean, or peanut cross‐section.  相似文献   

13.
An interpolated coefficient finite element method is presented and analyzed for the two‐dimensional elliptic sine‐Gordon equations with Dirichlet boundary conditions. It is proved that the discretization scheme admits at least one solution, and that a subsequence of the approximation solutions converges to an exact solution in L2‐norm as the mesh size tends to zero. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

14.
Methodology for development of compact numerical schemes by the practical finite‐analytic method (PFAM) is presented for spatial and/or temporal solution of differential equations. The advantage and accuracy of this approach over the conventional numerical methods are demonstrated. In contrast to the tedious discretization schemes resulting from the original finite‐analytic solution methods, such as based on the separation of variables and Laplace transformation, the practical finite‐analytical method is proven to yield simple and convenient discretization schemes. This is accomplished by a special universal determinant construction procedure using the general multi‐variate power series solutions obtained directly from differential equations. This method allows for direct incorporation of the boundary conditions into the numerical discretization scheme in a consistent manner without requiring the use of artificial fixing methods and fictitious points, and yields effective numerical schemes which are operationally similar to the finite‐difference schemes. Consequently, the methods developed for numerical solution of the algebraic equations resulting from the finite‐difference schemes can be readily facilitated. Several applications are presented demonstrating the effect of the computational molecule, grid spacing, and boundary condition treatment on the numerical accuracy. The quality of the numerical solutions generated by the PFAM is shown to approach to the exact analytical solution at optimum grid spacing. It is concluded that the PFAM offers great potential for development of robust numerical schemes. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

15.
Purpose In this article, a novel computational method is introduced for solving the fractional nonlinear oscillator differential equations on the semi‐infinite domain. The purpose of the proposed method is to get better and more accurate results. Design/methodology/approach The proposed method is the combination of the sine‐cosine wavelets and Picard technique. The operational matrices of fractional‐order integration for sine‐cosine wavelets are derived and constructed. Picard technique is used to convert the fractional nonlinear oscillator equations into a sequence of discrete fractional linear differential equations. Operational matrices of sine‐cosine wavelets are utilized to transformed the obtained sequence of discrete equations into the systems of algebraic equations and the solutions of algebraic systems lead to the solution of fractional nonlinear oscillator equations. Findings The convergence and supporting analysis of the method are investigated. The operational matrices contains many zero entries, which lead to the high efficiency of the method, and reasonable accuracy is achieved even with less number of collocation points. Our results are in good agreement with exact solutions and more accurate as compared with homotopy perturbation method, variational iteration method, and Adomian decomposition method. Originality/value Many engineers can utilize the presented method for solving their nonlinear fractional models.  相似文献   

16.
This paper proposes a meshless method based on coupling the method of fundamental solutions (MFS) with quasi-interpolation for the solution of nonhomogeneous polyharmonic problems. The original problems are transformed to homogeneous problems by subtracting a particular solution of the governing differential equation. The particular solution is approximated by quasi-interpolation and the corresponding homogeneous problem is solved using the MFS. By applying quasi-interpolation, problems connected with interpolation can be avoided. The error analysis and convergence study of this meshless method are given for solving the boundary value problems of nonhomogeneous harmonic and biharmonic equations. Numerical examples are also presented to show the efficiency of the method.  相似文献   

17.
In this study, we consider a viscous compressible model of plasma and semiconductors, which is expressed as a compressible Navier‐Stokes‐Poisson equation. We prove that there exists a strong solution to the boundary value problem of the steady compressible Navier‐Stokes‐Poisson equation with large external forces in bounded domain, provided that the ratio of the electron/ions mass is appropriately small. Moreover, the zero‐electron‐mass limit of the strong solutions is rigorously verified. The main idea in the proof is to split the original equation into 4 parts, a system of stationary incompressible Navier‐Stokes equations with large forces, a system of stationary compressible Navier‐Stokes equations with small forces, coupled with 2 Poisson equations. Based on the known results about linear incompressible Navier‐Stokes equation, linear compressible Navier‐Stokes, linear transport, and Poisson equations, we try to establish uniform in the ratio of the electron/ions mass a priori estimates. Further, using Schauder fixed point theorem, we can show the existence of a strong solution to the boundary value problem of the steady compressible Navier‐Stokes‐Poisson equation with large external forces. At the same time, from the uniform a priori estimates, we present the zero‐electron‐mass limit of the strong solutions, which converge to the solutions of the corresponding incompressible Navier‐Stokes‐Poisson equations.  相似文献   

18.
For solving large scale linear least‐squares problem by iteration methods, we introduce an effective probability criterion for selecting the working columns from the coefficient matrix and construct a greedy randomized coordinate descent method. It is proved that this method converges to the unique solution of the linear least‐squares problem when its coefficient matrix is of full rank, with the number of rows being no less than the number of columns. Numerical results show that the greedy randomized coordinate descent method is more efficient than the randomized coordinate descent method.  相似文献   

19.
The coupled problem for a generalized Newtonian Stokes flow in one domain and a generalized Newtonian Darcy flow in a porous medium is studied in this work. Both flows are treated as a first‐order system in a stress‐velocity formulation for the Stokes problem and a volumetric flux‐hydraulic potential formulation for the Darcy problem. The coupling along an interface is done using the well‐known Beavers–Joseph–Saffman interface condition. A least squares finite element method is used for the numerical approximation of the solution. It is shown that under some assumptions on the viscosity the error is bounded from above and below by the least squares functional. An adaptive refinement strategy is examined in several numerical examples where boundary singularities are present. Due to the nonlinearity of the problem a Gauss–Newton method is used to iteratively solve the problem. It is shown that the linear variational problems arising in the Gauss–Newton method are well posed. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1150–1173, 2015  相似文献   

20.
Garvin Danisch 《PAMM》2004,4(1):698-699
A least‐squares finite element method for the shallow water equations with viscosity parameter μ > 0 is proposed and studied. The shallow water equations are reformulated as a first order system by adding a new variable for the velocity flux. The reformulated first order system is combined with a characteristic‐based time discretization and a least squares approach. For the correct boundary treatment in the limit case μ → 0, a trace theorem is presented. For the numerical computation of the velocity, the finite element spaces introduced recently by Mardal, Tai and Winther (SIAM Journal on Numerical Analysis 40, pp. 1605–1631) are used. The degrees of freedom in these spaces can be identified with the normal and tangential components, respectively. Numerical results for some test examples are shown. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号