首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acrylic acid (AA) is used in many emulsion polymerization formulations to improve the colloidal stability during and after the production of latex products. Theoretically, the improved stability originates from electrostatic repulsion complemented with steric repulsion. The objective of this work was to study the contribution of AA to the colloidal stability of polystyrene and styrene/AA copolymer latices under simulated reaction conditions. The strength of electrostatic and steric repulsion forces as a function of the electrolyte concentration, pH, and temperature was investigated via coagulation experiments with monomer‐swollen latices in stirred tank reactors. Transmission electron microscopy pictures and dynamic light scattering measurements provided an understanding of the conditions and mechanisms leading to coagulation. The experiments demonstrated that the presence of surface‐bound carboxylic groups only improved the colloidal stability if the carboxylic groups were charged, that is, at a high pH. At a low pH, the copolymer latices were even less stable than the homopolymer latex, and this indicated that the addition of AA did not improve the colloidal stability of a growing polystyrene latex. With respect to emulsion polymerization process operations, insufficient mixing and a highly concentrated electrolyte feed were found to be sources of fouling and enhanced macroscopic coagulation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 726–732, 2005  相似文献   

2.
The participation of electrolyte cations in the adsorption of bovine serum albumin (BSA) onto polymer latices was investigated. The latices used were hydrophobic polystyrene (PS), and hydrophilic copolymers, i.e., styrene (St)/2-hydroxyethyl methacrylate(HEMA) copolymer [P(St/HEMA)] and styrene/acrylamide (AAm) copolymer [P(St/AAm)]. Three kinds of electrolyte cations (Na+, Ca2+, Mg2+) were used as the chloride. The amount of BSA adsorbed in every cation medium showed a maximum near the isoelectric point (iep, pH about 5) of the protein. The amounts of BSA adsorbed onto copolymer latices (except in the acidic pH region lower than the iep) were considerably smaller than that onto PS latex because of the steric repulsion and the decrease in the hydrophobic interaction between BSA and copolymer latices. In the acidic pH region, there was little difference in the amount of BSA adsorbed in every cation medium. However, in the pH region higher than the iep, the amounts of BSA adsorbed (particularly onto PS latex) in divalent cations (Ca2+ and Mg2+) media were relatively greater compared with that in a monovalent (Na+) one. This result was interpreted on the basis of the differences in such effects of electrolyte cations as dehydration power, suppression of the electrostatic repulsion, and binding affinity to BSA molecule. Ion Chromatographic estimation of the amounts of electrolyte cations captured upon BSA adsorption (in pH > 5) revealed that divalent cations were incorporated into the contact interface between the latex and BSA molecule so as to prevent the accumulation of anion charge and facilitate the protein adsorption.  相似文献   

3.
Deposition of polymer latices on a grafted Nylon 6 fiber was studied as a function of pH and the degree of grafting. The latices were polystyrene (PS), styrene/acrylamide copolymer (P(St/AAm)) and styrene/acrylic acid copolymer (P(St/AA)). The deposition of the latices on the grafted fiber decreased in every case with increasing pH and no deposition was observed at alkaline pH. The grafting of fiber with acrylic and methacrylic acid reduced the deposition of P(St/AAm) and P(St/AA) latices but had no influence on the deposition of PS latex. The relation between the deposition rates and the interaction energy at acidic pH indicates that the deposition of PS latex on the grafted fiber mainly depends on the electrostatic interaction. These results suggest that the expansion of water-soluble polyelectrolyte layer on the surface of grafted fiber plays an important role on the deposition.  相似文献   

4.
This work is focused on analyzing the electrokinetic behavior and colloidal stability of latex dispersions having different amounts of adsorbed ionic surfactants. The effects of the surface charge sign and value, and the type of ionic surfactant were examined. The analysis of the electrophoretic mobility (mu(e)) versus the electrolyte concentration up to really high amounts of salt, much higher than in usual studies, supports the colloidal stability results. In addition, useful information to understand the adsorption isotherms was obtained by studying mu(e) versus the amount of the adsorbed surfactant. Aggregation studies were carried out using a low-angle light scattering technique. The critical coagulation concentrations (ccc) of the particles were obtained for different surfactant coverage. For latex particles covered by ionic surfactants, the electrostatic repulsion was, in general, the main contribution to the colloidal stability of the system; however, steric effects played an important role in some cases. For latices with not very high colloidal stability, the adsorption of ionic surfactants always improved the colloidal stability of the dispersion above certain coverage, independently of the sign of both, latex and surfactant charge. This was in agreement with higher mobility values. Several theoretical models have been applied to the electrophoretic mobility data in order to obtain different interfacial properties of the complexes (i.e., zeta potential and density charge of the surface charged layer).  相似文献   

5.
6.
A series of linear and lightly crosslinked nanostructured latices was prepared by a sequential multistage semicontinuous emulsion polymerization process alternating styrene (S) and n‐butyl acrylate (BA) monomer feeds five times, that is ten stages, and vice versa, along with several control latices. Transmission electron micrographs of the RuO4‐stained cross sections of nanostructured and copolymer latex particles and films showed that their particle morphologies were not very different from each other, but the nanostructured latex particles were transformed into a nanocomposite film containing both polystyrene (PS) and poly(n‐butyl acrylate) (PBA) nanodomains interconnected by their diffuse polymer mixtures (i.e. interlayers). The thermal mechanical behaviors of the nanostructured latex films showed broad but single Tgs slightly higher than those of their counterpart copolymer films. These single Tgs indicated that their major component phases were the diffuse interlayers and that they behaved like pseudopolymer alloys. The minimum film formation temperatures of nanostructured latices capped with PBA and PS, respectively, were 15 °C lower than and equal to those of their counterpart copolymer latices, but their Tgs were about 10 °C higher. Consequently, nanostructured latices enabled us to combine good film formation with high strengths for adhesives and coatings applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2826–2836, 2006  相似文献   

7.
Stable cationic latices were prepared by charge inversion of anionic styrene-acrylic copolymer latices upon binding Al3+ and Fe3+ ions. This is achieved by stabilizing the latices with a high-HLB (hydrophile-lypophile balance) nonionic surfactant that imparts strong steric stability to the latex, even in the presence of high concentrations of multivalent counterions while these are bound to the latex anionic sites. The cationic latices thus prepared have good stability properties, and the same procedure should be applicable to essentially any latex-carrying anionic sites. Analytical ESI-TEM images show that particle-bound iron is concentrated at the particle borders, but it is also found in the particle bulk.  相似文献   

8.
An ambient self‐curable latex (ASCL) was prepared via the blending of colloidal dispersions in water of a chloromethylstyrene‐functionalized copolymer and a tertiary‐amine‐functionalized copolymer. Upon casting and drying under ambient conditions, the ASCL could generate crosslinked continuous polymer films. The crosslinking occurred via the Menschutkin reaction (quaternization) between the two types of functional groups. Because this reaction was reversible at high temperatures, the films could be decrosslinked and hence were self‐curable. The prepared ASCL exhibited excellent colloidal and chemical stability during long‐term storage: no significant changes in the colloidal properties, such as the particle size, electrophoretic mobility, and crosslinking reactivity, were observed after 48 months of storage. The electrophoretic measurements indicated that the electrostatic repulsion between the negatively charged particles of the ASCL was responsible for the excellent stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2598–2605, 2005  相似文献   

9.
Recently, steric repulsive forces induced by a new graft copolymer surfactant, which is based in inulin (polyfructose), have been described. Previous investigations by atomic force microscopy between solid surfaces covered with adsorbed surfactant indicated strong repulsive forces even at high electrolyte concentration, due to the steric repulsion produced by the surfactant hydration. In the present paper, the colloidal stabilization provided by this surfactant is studied by rheology. The measurements were carried out on sterically stabilized polystyrene (PS) and poly(methyl methacrylate) (PMMA) containing adsorbed surfactant (INUTEC SP1). Steady-state shear stress as a function of shear rate curves was established at various latex volume fractions. The viscosity volume fraction curves were compared with those calculated using the Doughtry-Krieger equation for hard sphere dispersions. From the experimental eta r-phi curves the effective volume fraction of the latex dispersions could be calculated and this was used to determine the adsorbed layer thickness Delta. The value obtained was 9.6 nm, which is in good agreement with that obtained using atomic force microscopy (AFM). Viscoelastic measurements of the various latex dispersions were carried out as a function of applied stress (to obtain the linear viscoelastic region) and frequency. The results showed a change from predominantly viscous to predominantly elastic response at a critical volume fraction (phi c). The effective critical volume fraction, phi eff, was calculated using the adsorbed layer thickness (Delta) obtained from steady-state measurements. For PS latex dispersions phi eff was found to be equal to 0.24 whereas for PMMA phi eff=0.12. These results indicated a much softer interaction between the latex dispersions containing hydrated polyfructose loops and tails when compared with latices containing poly(ethylene oxide) (PEO) layers. The difference could be attributed to the stronger hydration of the polyfructose loops and tails when compared with PEO. This clearly shows the much stronger steric interaction between particles stabilized using hydrophobically modified inulin.  相似文献   

10.
Stable monodisperse amphoteric latex particles were prepared by the semibatch surfactant-free emulsion copolymerization of methyl methacrylate and methacrylic acid (MAA) initiated by 2,2'-azobis(2-amidinopropane) dihydrochloride (V-50). These submicron particles have a net positive charge, which is attributed to the ionized amino group at low pH. In contrast, they become negatively charged owing to the ionized carboxyl group at high pH. There exists a pH at which these particles exhibit a net charge of zero (pI). At a constant level of V-50, the pI value of these latices decreases with increasing amount of MAA used in the polymerization recipe. The effect of pH on the colloidal stability of these amphoteric latices toward the addition of the negatively charged latex was investigated. The resultant coagulation kinetics was used to study the electrostatic interaction between the amphoteric particles and negatively charged particles.  相似文献   

11.
Experiments carried out by Stenkamp et al. [Stenkamp, V. S.; McGuiggan, P.; Berg, J. C. Langmuir 2001, 17, 637.] have shown that polystyrene latexes can be restabilized at sufficiently high electrolyte concentrations in the presence of an amphiphilic block copolymer [poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO)] At even higher electrolyte concentrations, the systems can again be destabilized. The present paper attempts to explain the restabilization through the dominance of steric interactions and the destabilization through the dominance of depletion interactions. Because of salting out, as the concentration of electrolyte increases, the polymer molecules are increasingly precipitated onto the surface of the latex particles and, at sufficiently high electrolyte concentrations, form, in addition, aggregates. The precipitation onto the latex particles generates steric repulsion, which is responsible for the restabilization, whereas the formation of aggregates generates depletion interactions, which are responsible for destabilization.  相似文献   

12.
The poly(methyl methacrylate-co-styrene) was prepared by batch emulsion polymerization to clarify the effect of characteristics of polymer on particle coagulation. Experimental results showed that the size of final latex particle increased with increasing methyl methacrylate in initial recipe, ranged from 84 to 193 nm, which was attributed to the particle coagulation. With the methyl methacrylate increased, the hydrophilicity of polymeric particle improved, thus led to the surfactant molecules packed loosely on the polymer surface, further, enhanced particle coagulation occurred. On the contrary, the surfactant molecules adsorbed on tightly the polymeric particle surface (methyl methacrylate content low) surface led to the electrostatic repulsion energy of polymer particle improved, and polymer particle stability was also improved. Thus, combined with the results previously reported by us (Colloid Polym Sci 291: 2385–2398, 2013 and Colloid Polym Sci 292: 519-525, 2014), the particle coagulation depended not only on the aqueous phase such as electrolyte concentration and methanol content, but also on the nature of polymer such as hydrophilicity.  相似文献   

13.
Copolymer latices of butylacrylate (BA) with acrylic and methacrylic acid (AA and MAA) were prepared by batch type emulsion polymerization, and, for comparison, copolymers with identical monomer composition were prepared by batch type solution polymerization.The distribution of the carboxylic monomers in the latex particles and the serum was studied by density gradient and sedimentation experiments with the analytical ultracentrifuge. Dynamic mechanical measurements of films of these copolymers were used to determine the storage and loss moduli as a function of temperature. From these measurements the position and extension of the glass transition range on the temperature scale is obtained. For heterogeneous emulsion copolymers with two glass transition temperatures the distribution of the carboxylic monomer units in the different copolymer phases can be determined. Electron microscopy of ultra thin cross-sections of stained films gave further insight into the film morphology.The combination of the results obtained with the different methods gives rise to the following clues: In the BA/AA latices about 40% (by weight) of the total AA used in the recipe are found in the serum as a water soluble polymer, about 50% are found to increase the glass transition temperatureT g of the bulk of the BA copolymer and, therefore, are thought to be incorporated into the interior of the latex particles, and the remaining 10% are, conclusively, located on the particle surface.In the BA/MAA latices no water soluble copolymer could be detected in the serum, about 90% of the MAA used is found in the bulk of the copolymer, and about 10% form a second hard phase on the surface of the latex particles.Dynamic mechanical measurements on the copolymer latex films show at least two phases with different glass transition temperatures: the bulk of the copolymer with a relatively low content of (M)AA units and a glass transition range at low temperatures, and a second (M)AA rich phase with a highT g.The latter phase forms a honeycomb-like structure surrounding the packed latex particles. That results in a three-dimensional network of polymer with a highT g extending throughout the latex film. In spite of the fact that this phase is built from a small fraction of the total copolymer only, it has a very pronounced influence on the performance behaviour of latex films.Dedicated to Professor Dr. R. Manecke on the occasion of his 70th birthday.  相似文献   

14.
The photo‐induced association and dissociation of poly(sodium acrylate) containing a small amount of photoresponsive malachite green (MG) in aqueous solution were studied. It is known that MG dissociates into ion pairs under UV irradiation to produce the green triphenylmethyl cation. The cation thermally recombines with its counter anion to regenerate the colorless neutral compound. The random copolymer of acrylic acid with 0.05 mol % of MG monomer [P(A/MG0.05)] was soluble in aqueous 0.01 M NaCl at pH 12 as a unimer due to electrostatic repulsion between carboxylate pendent groups when the MG moieties were in the neutral form. On the other hand, these MG groups were converted to the cationic form on UV irradiation, leading to polymer aggregation driven by electrostatic interactions between the cationic MG and anionic carboxylate pendent groups. These aggregates could be dissociated by heating in the dark, as the cationic MG reverted to its neutral form, eliminating these attractive electrostatic interactions. The association and dissociation of the copolymer was monitored by dynamic light scattering (DLS). When the salt concentration in aqueous solutions of P(A/MG0.05) was increased from 0.01 to 0.5 M at pH 12, no aggregation was observed on UV irradiation because of ionic screening of the aforementioned electrostatic interactions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
The surface characteristics of styrene-acrylamide (St-AAm) copolymer latex particles were investigated and their deposition onto polyamide (Nylon 6), polyester (polyethylene terephthalate) and polyacrylonitrile fibers was studied. Conductometric titrations and viscosity measurements of latex dispersions revealed the presence of a water-soluble polymer layer on the particle surface and the thickness of its polymer layer increased with increasing acrylamide fraction in a latex particle. The deposition rates of St-AAm copolymer latices onto Nylon 6 and polyester fibers increased with increasing acrylamide fraction and decreasing pH at a constant ionic strength. These deposition phenomena onto Nylon 6 and polyester fibers agreed qualitatively with prediction based on the electrokinetic data of the latices and the fibers. However, a participation of attractive interaction due to an increase in acrylamide fraction was also suggested.The deposition rate onto polyacrylonitrile fiber decreased with increasing acrylamide fraction in spite of a decrease in electrostatic repulsive interaction, and it was found that a specific large repulsive interaction acts between polyacrylonitrile fiber and St-AAm copolymer latex particles.This paper is part VIII in a series on Interfacial electrical studies on the deposition of polymer latexes onto fabrics and the removal of these deposited latexes. Part VII: Tamai H, Kimura I,Suaza T Coll Polym Sci 261: 661 (1983)  相似文献   

16.
We explored phase separation and self‐assembly of perfluoroalkyl segments at the surface of polymer films obtained from latices of semifluorinated acrylate copolymers and the corresponding latex blends of nonfluorinated and semifluorinated polyacrylates. With laser‐induced secondary mass spectrometry the fluorine distribution was measured after annealing above the minimum film‐forming temperature of the polymers up to a depth of several micrometers. Depth profiles of a semifluorinated acrylate homopolymer and latex blends thereof with fluorine‐free alkylacrylates with 25, 50, and 75 mol % semifluorinated acrylate as well as a copolymer comprised of alkyl acrylate and semifluorinated acrylate (50/50 mol %) were investigated. In the case of latex blends containing both semifluorinated polyacrylates and fluorine‐free or low‐fluorine polymers, self‐assembly accounted for enrichment of the perfluoroalkyl segments at the surface. Coatings exhibiting low surface energy and having a substantially reduced total fluorine content were obtained. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 360–367, 2003  相似文献   

17.
Poly(acrylic acid‐co‐sodium acrylate)/zinc oxide, P(AA‐SA)/ZnO, composite latex particles were synthesized by inverse miniemulsion polymerization. The ZnO nanoparticles were prepared by hydrothermal synthesis and undergone oleic acid (OA) surface treatment. The X‐ray diffraction pattern and FT‐IR spectra characterized the crystal structure and functional groups of OA‐ZnO nanoparticles. An appropriate formulation in preparing P(AA‐SA) latex particles, ensuring the dominant in situ particle nucleation and growth, was developed in our experiment first. Sodium hydroxide was chosen as a costabilizer, because of its ability to increase the deprotonation of acylic acid and enhance the hydrophilicity of monomer, acrylic acid besides providing osmotic pressure. The growth mechanism of P(AA‐SA)/ZnO composite particles was proposed. The OA‐ZnO nanoparticles were adsorbed on or around the surface of P(AA‐SA) latex particles by hydrophobic interaction, thus enhanced the interfacial tension over latex particles. The P(AA‐SA)/ZnO composite latex particles owned better thermal stability than pure latex particles. The pH regulation capacity was excellent for both ZnO and P(AA‐SA) particles. Combining P(AA‐SA) and ZnO nanoparticles into composite particles, the performance in pH regulation and UV shielding was discussed from our experimental results. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8081–8090, 2008  相似文献   

18.
Stable monodisperse poly(vinyl acetate) (PVAc) submicronic latex particles were synthesized by ab initio batch emulsion polymerization using a dextran derivative from renewable resource as an efficient steric stabilizer. The dextranend‐functionalized by a xanthate moiety was synthesized by Huisgen's 1,3‐dipolar cycloaddition (click chemistry). It was applied as a macromolecular RAFT (reversible addition fragmentation chain transfer) agent in surfactant‐free emulsion polymerization of vinyl acetate to form in situ an amphiphilic block copolymer able to efficiently stabilize the latex particles. The method afforded the preparation of high solids content (27%) latices coated by dextran. Both the kinetic study and the molar mass analyses confirmed the involvement of the dithiocarbonate group in the emulsion polymerization process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2845–2857, 2008  相似文献   

19.
The preparation of zwitterionic latex particles is reported by using a mixed anionic and cationic initiator system without requiring surface-active agents. Isoelectric points were found from microelectrophoresis experiments and were in the pH range of 3.5-5. Close to the isoelectric point, the latices coagulated as expected, and good stability was achieved outside this narrow range. This range of stability was in good agreement with predictions from current theory. Redispersion after coagulation was found to be difficult as was expected for a hydrophobic colloid. The electrokinetic behavior did not result in the maximum in zeta potential at an electrolyte concentration of 1 mM unlike the situation for other hydrophobic polystyrene latex particles, and hence these systems may be even better models for other colloidal studies.  相似文献   

20.
Lyophobic dispersions can be stabilized against aggregation by electrostatic repulsion or by “steric” repulsion caused by the presence of large molecules at the interfaces. Theories of colloid stability are briefly reviewed.Strong and weak points in the present interpretations are pointed out. Two important weak points in the interpretation of electrostatic stabilization are: 1) the assumption that the zeta potential and the Stern potential are about identical, and 2) the apparent lack of influence of the particle size on the rate of slow coagulation.A list of areas where new experiments and/or further development of theories are expected to be profitable closes the paper. In several of these areas a combination of a fluid mechanical and a colloid chemical approach is called for.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号