共查询到20条相似文献,搜索用时 0 毫秒
1.
Liang Liao Liming Ding Frank E. Karasz Yi Pang 《Journal of polymer science. Part A, Polymer chemistry》2004,42(2):303-316
Poly[(2‐alkyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,3‐phenylenevinylene)]s ( 8 ) and poly[(2‐alkyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,4‐phenylenevinylene)]s ( 10 ) were synthesized by the Wittig reaction to provide materials containing 45–62% cis‐vinylene bonds. The optical characteristics of 8 and 10 were compared with those of their respective isomers, 3 and 4 , the cis‐vinylene contents of which were significantly lower (9–16%). Although a greater fraction of cis‐CH?CH linkages caused the absorption maximum (λmax) of 8 and 10 to be slightly blueshifted (by ~3–6 nm) from that of 3 and 4 , the impact of the vinylene bond geometry appeared to be negligible on their fluorescence spectra. The fluorescence quantum efficiencies of 8 and 10 were estimated to be approximately 0.25 and 0.72, respectively. Both 8 (λmax ≈ 445 or 462 nm) and 10 (λmax ≈ 480 or 506 nm) were electroluminescent, showing effective color tuning by the controlled insertion of m‐phenylene moieties. The external electroluminescence quantum efficiencies were determined to be 4.26 × 10?3% for 8 and 0.63% for 10 . The cis/trans‐vinylene bond ratio had a great impact on the electroluminescence device performance of 8 but a much smaller impact on the performance of 10 . © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 303–316, 2004 相似文献
2.
Liang Liao Yi Pang Liming Ding Frank E. Karasz 《Journal of polymer science. Part A, Polymer chemistry》2003,41(17):2650-2658
Poly[(m‐phenylene vinylene)‐alt‐(o‐phenylene vinylene)]s with different contents of cis‐/trans‐CH?CH ( 3 and 6 ) have been synthesized through Wittig condensation. The polymers exhibit good solubility in common organic solvents such as toluene and tetrahydrofuran. A comparison of the optical properties has been made between 3 and its phenyl regioisomers containing either p‐phenylene or m‐phenylene units. The results show that the regiochemistry of the phenyl ring can be a useful tool for tuning the emission color of π‐conjugated polymers because the extension of π conjugation can only partially be achieved through an o‐phenylene bridge. Although both polymers 3 and 6 exhibit comparable low fluorescence quantum efficiencies (≈0.18) in solution, their films are highly luminescent, showing a broad emission band near 456 nm (blue color). Electroluminescence results show that the device of polymer 3 , which has a higher content of trans‐CH?CH linkages, is about 20 times more efficient than that of 6 . © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2650–2658, 2003 相似文献
3.
Liang Liao Yi Pang Liming Ding Frank E. Karasz 《Journal of polymer science. Part A, Polymer chemistry》2004,42(8):1820-1829
Green‐emitting substituted poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)]s ( 6 ) were synthesized via the Wittig–Horner reaction. The polymers were yellow resins with molecular weights of 10,600. The ultraviolet–visible (UV–vis) absorption of 6 (λmax = 332 or 415 nm) was about 30 nm redshifted from that of poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,4‐phenylenevinylene)] ( 2 ) but was only 5 nm redshifted with respect to that of poly[(1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)] ( 1 ). A comparison of the optical properties of 1 , 2 , and 6 showed that substitution on m‐ or p‐phenylene could slightly affect their energy gap and luminescence efficiency, thereby fine‐tuning the optical properties of the poly[(m‐phenylene vinylene)‐alt‐(p‐phenylene vinylene)] materials. The vibronic structures were assigned with the aid of low‐temperature UV–vis and fluorescence spectroscopy. Light‐emitting‐diode devices with 6 produced a green electroluminescence output (emission λmax ~ 533 nm) with an external quantum efficiency of 0.32%. Substitution at m‐phenylene appeared to be effective in perturbing the charge‐injection process in LED devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1820–1829, 2004 相似文献
4.
Rupei Tang Yutao Chuai Caixia Cheng Fu Xi Dechun Zou 《Journal of polymer science. Part A, Polymer chemistry》2005,43(14):3126-3140
A series of new poly(p‐phenylene vinylene) derivatives with different dendritic pendants—poly{2‐[3′,5′‐bis(2″‐ethylhexyloxy)benzyloxy]‐1,4‐phenylenevinylene} (BE–PPV), poly{2‐[3′,5′‐bis(3″,7″‐dimethyl)octyloxy]‐1,4‐phenylenevinylene} (BD–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBE–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBD–PPV), and poly[(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)‐co‐(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)] (BBE‐co‐BBD–PPV; 1:1)—were successfully synthesized according to the Gilch route. The structures and properties of the monomers and the resulting conjugated polymers were characterized with 1H and 13C NMR, elemental analysis, gel permeation chromatography, thermogravimetric analysis, ultraviolet–visible absorption spectroscopy, photoluminescence, and electroluminescence spectroscopy. The obtained polymers possessed excellent solubility in common solvents and good thermal stability, with a 5% weight loss temperature of more than 328 °C. The weight‐average molecular weights and polydispersity indices of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were in the range of 1.33–2.28 × 105 and 1.35–1.53, respectively. Double‐layer light‐emitting diodes (LEDs) with the configuration of indium tin oxide/polymer/tris(8‐hydroxyquinoline) aluminum/Mg:Ag/Ag devices were fabricated, and they emitted green‐yellow light. The turn‐on voltages of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were approximately 5.6, 5.9, 5.5, 5.2, and 4.8 V, respectively. The LED devices of BE–PPV and BD–PPV possessed the highest electroluminescent performance; they exhibited maximum luminance with about 860 cd/m2 at 12.8 V and 651 cd/m2 at 13 V, respectively. The maximum luminescence efficiency of BE–PPV and BD–PPV was in the range of 0.37–0.40 cd/A. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3126–3140, 2005 相似文献
5.
Ioakim K. Spiliopoulos John A. Mikroyannidis 《Journal of polymer science. Part A, Polymer chemistry》2002,40(15):2591-2600
Starting from the pyrylium salt and following a facile synthetic route, we synthesized and polymerized 4,4″‐diiodo‐2′,6′‐di[4‐(2′‐ethylhexyl)oxy]phenyl‐p‐terphenyl with p‐divinylbenzene or p‐diethynylbenzene. The resulting polymers had moderate molecular weights, were amorphous, and dissolved in tetrahydrofuran and chloroform, with glass‐transition temperatures of 120–131 °C. The polymers behaved as violet‐blue‐emitting materials with photoluminescence maxima around 420 and 450 nm in solution and in thin films, respectively. They possessed well‐defined chromophores resulting from steric interactions in the polymer chain. The photoluminescence quantum yields were up to 0.29. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2591–2600, 2002 相似文献
6.
Liang Liao Yi Pang Liming Ding Frank E. Karasz Philip R. Smith Michael A. Meador 《Journal of polymer science. Part A, Polymer chemistry》2004,42(23):5853-5862
Soluble yellow/orange‐emitting poly[tris(2,5‐dihexyloxy‐1,4‐phenylenevinylene)‐alt‐(1,3‐phenylenevinylene)] derivatives ( 6 ) were synthesized and characterized. These polymers contained oligo(p‐phenylene vinylene) chromophores of equal conjugation length, which were jointed via a common m‐phenylene unit. An optical comparison of 6 and its model compound ( 8 ) at room temperature and low temperatures revealed the similarity in their absorption and fluorescence band structures. The vibronic band structure of 6 was assigned with the aid of the spectroscopic data for 8 at the low temperatures. 6 was electroluminescent and had an emission maximum wavelength at approximately 565 nm. With the device indium tin oxide/PEDOT/ 6 /Ca configuration, the polymer exhibited an external quantum efficiency as high as 0.25%. Simple substitution on m‐phenylene of 6 raised the electroluminescence output by a factor of about 10. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5853–5862, 2004 相似文献
7.
In this paper, the electroluminescent properties of a new partially‐conjugated hyperbranched poly (p‐phenylene vinylene) (HPPV) were studied. The single layer light‐emitting device with HPPV as the emitting layer emits blue‐green light at 496 nm, with a luminance of 160 cd/m2 at 9 V, a turn‐on voltage of 4.3 V and an electroluminescent efficiency of 0.028 cd/A. By doping an electron‐transport material [2‐(4‐biphenylyl)‐5‐phenyl‐1,3,4‐oxadiazole, PBD] into the emitting layer and inserting a thin layer of tris(8‐hydroxy‐quinoline)aluminum (Alq3) as electron transporting/hole blocking layer for the devices, the electroluminescent efficiency of 1.42 cd/A and luminance of 1700 cd/m2 were achieved. The results demonstrate that the devices with the hyperbranched polymers as emitting material can achieve high efficiency through optimization of device structures. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
8.
Liang Liao Ali Cirpan Liming Ding Frank E. Karasz Yi Pang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(7):2307-2315
New poly(phenylene vinylene) derivatives with a 5‐diphenylamino‐1,3‐phenylene linkage (including polymers 2 , 3 , and 5 ) have been synthesized to improve the charge‐injection properties. These polymers are highly photoluminescent with fluorescent quantum yields as high as 76% in tetrahydrofuran solutions. With effective π‐conjugation interruption at adjacent m‐phenylene units, chromophores of different conjugation lengths can be incorporated into the polymer chain in a controllable manner. In polymer 2 , the structural regularity leads to an isolated, well‐defined emitting chromophore. Isomeric polymer 3 of a random chain sequence, however, allows the effective emitting chromophores to be joined in sequence by sharing a common m‐phenylene linkage (as shown in a molecular fragment). Double‐layer light‐emitting‐diode devices using 2 , 3 , and 5 as emitting layers have turn‐on voltages of about 3.5 V and produce blue‐green emissions with peaks at 493, 492, and 482 nm and external quantum efficiencies up to 1.42, 0.98, and 1.53%, respectively. In comparison with a light‐emitting diode using 2 , a device using 3 shows improved charge injection and displays increased brightness by a factor of ~3 to 1400 cd/m2 at an 8‐V bias. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2307–2315, 2006 相似文献
9.
John A. Mikroyannidis Ioakim K. Spiliopoulos 《Journal of polymer science. Part A, Polymer chemistry》2004,42(7):1768-1778
Two novel poly(p‐phenylene vinylene) polymers, which carried side substituents with cyano groups or 1,3,4‐oxadiazole, were synthesized by Heck coupling. They consisted of alternating conjugated segments and nonconjugated aliphatic spacers. The polymers had moderate molecular weights, were amorphous, and dissolved readily in tetrahydrofuran and halogenated organic solvents. They were stable up to approximately 340 °C in N2 and 290 °C in air, and the anaerobic char yield was around 60% at 800 °C. The polymer with cyano side groups emitted blue light in solutions and thin films with identical photoluminescence (PL) maximum at 450 nm; this supported the idea that chain interactions were hindered even in the solid state. The PL maximum of this polymer in thin films was blueshifted upon annealing at 120 °C, indicating a thermochromic effect as a result of conformational changes in the polymer backbone. The polymer containing side substituents with oxadiazole rings emitted blue light in solutions with a PL maximum at 474 nm and blue‐greenish light in thin films with a PL maximum at 511 nm. The PL quantum yields of the polymers in tetrahydrofuran were 0.13–0.24. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1768–1778, 2004 相似文献
10.
Liang Liao Liming Ding Frank E. Karasz Yi Pang 《Journal of polymer science. Part A, Polymer chemistry》2005,43(13):2800-2809
Blue‐emitting poly{[5‐(diphenylamino)‐1,3‐phenylenevinylene]‐alt‐(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)} ( 3 ), poly{[5‐bis‐(4‐butyl‐phenylamino)‐1,3‐phenylenevinylene]‐alt‐(1,3‐phenylene vinylene)} ( 4 ), and poly(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene) ( 5 ) were synthesized by the Wittig–Horner reaction. Although polymers 3–5 possess fluorescent quantum yields of only 13–34% in tetrahydrofuran solution, their films appear to be highly luminescent. Attachments of substituents tuned the emission color of thin films to the desirable blue region (λmax = 462–477 nm). Double‐layer light‐emitting‐diode devices with 3 and 5 as an emissive layer produced blue emission (λem = 474 and 477 nm) with turn‐on voltages of 8 and 11 V, respectively. The external quantum efficiencies were up to 0.13%. © 2005Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2800–2809, 2005 相似文献
11.
Zhanao Tan Wenqing Zhang Deping Qian Hua Zheng Shengqiang Xiao Yongfang Li Rupei Tang Fu Xi 《先进技术聚合物》2011,22(12):2503-2508
In this study, the optical, electrochemical, electrolumiscent, and photovoltaic properties of a series of poly(p‐phenylene vinylene) (PPV) derivatives bearing different dendritic pendants, poly{2‐[3′,5′‐bis(2″‐ethylhexyloxy)benzyloxy]‐1,4‐phenylenevinylene} (BE‐PPV), poly{2‐[2′,5′‐bis(3″,7″‐dimethyl)octyloxy]‐1,4‐phenylenevinylene} (BD‐PPV), poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV), poly{2‐[3′,5′‐bis(2″‐ethylhexyloxy)benzyloxy]‐1,4‐phenylenevinylene}‐co‐poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (BE‐co‐MEH‐PPV), and poly{2‐[2′,5′‐bis(3″,7″‐dimethyl)octyloxy]‐1,4‐phenylenevinylene}‐co‐poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylenevinylene] (BD‐co‐MDMO‐PPV), were investigated. The steric pendants strongly affect the absorption spectra, photoluminescence (PL) sepctra, the onset oxidation/reduction potentials, and further affect the electrolumiscent and photovoltaic properties. Copolymerization can reduce the steric effect and improve the electrolumiscent and photovoltaic properties. The brightness of light‐emitting diodes base on copolymer BE‐co‐MEH‐PPV and BD‐co‐MDMO‐PPV reached 3988 and 3864 cd/m2, respectively, much higher than that based on homopolymer BE‐PPV (523 cd/m2) and BD‐PPV (333 cd/m2), also higher than that based on MEH‐PPV (3788 cd/m2). The power conversion efficiency (PCE) of solar cells based on BE‐co‐MEH‐PPV and BD‐co‐MDMO‐PPV reached 1.41, 0.76%, respectively, much higher than that based on BE‐PPV (0.24%) and BD‐PPV (0.14%). Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
12.
13.
Catherine Bianchi Bruno Grassl Bernard Franois Christine Dagron‐Lartigau 《Journal of polymer science. Part A, Polymer chemistry》2005,43(19):4337-4350
Water‐soluble and photoluminescent block copolymers [poly(ethylene oxide)‐block‐poly(p‐phenylene vinylene) (PEO‐b‐PPV)] were synthesized, in two steps, by the addition of α‐halo‐α′‐alkylsulfinyl‐p‐xylene from activated poly(ethylene oxide) (PEO) chains in tetrahydrofuran at 25 °C. This copolymerization, which was derived from the Vanderzande poly(p‐phenylene vinylene) (PPV) synthesis, led to partly converted PEO‐b‐PPV block copolymers mixed with unreacted PEO chains. The yield, length, and composition of these added sequences depended on the experimental conditions, namely, the order of reagent addition, the nature of the monomers, and the addition of an extra base. The addition of lithium tert‐butoxide increased the length of the PPV precursor sequence and reduced spontaneous conversion. The conversion into PPV could be achieved in a second step by a thermal treatment. A spectral analysis of the reactive medium and the composition of the resulting polymers revealed new evidence for an anionic mechanism of the copolymerization process under our experimental conditions. Moreover, the photoluminescence yields were strongly dependant on the conjugation length and on the solvent, with a maximum (70%) in tetrahydrofuran and a minimum (<1%) in water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4337–4350, 2005 相似文献
14.
John A. Mikroyannidis Vasilis P. Barberis Věra Cimrová 《Journal of polymer science. Part A, Polymer chemistry》2007,45(6):1016-1027
A novel conjugated poly[(fluorene‐2,7‐vinylene)‐alt‐(1,4‐phenylenevinylene)] derivative 2 with quaternizable tertiary amino groups was synthesized by Heck coupling of a substituted 2,7‐dibromofluorene and 1,4‐dialkoxy‐2,5‐divinylbenzene. The corresponding quaternary ammonium cationic polyelectrolyte 3 was obtained by the treatment of 2 with bromoethane. Both polymers were soluble in common organic solvents, like tetrahydrofuran, chloroform, and dichloromethane. Polymer 3 showed a limited solubility in alcohols and was insoluble in water. Photophysical and electrochemical properties of the resulting polymers were fully investigated. An intensive green photoluminescence (PL) with maxima at 550 and 545 nm was observed from thin films of 2 and 3 polymers, respectively, red‐shifted compared with the PL emission spectra measured in the solution. The electrochemical band gaps were 2.38–2.45 eV. Single‐layer and double‐layer (with poly[3,4‐(ethylenedioxy)thiophene]/poly (styrenesulfonate) (PEDOT:PSS)) light‐emitting devices (LEDs) with ITO and Al electrodes were prepared and studied. They emitted a green light and their electroluminescence (EL) spectra were similar to those of PL thin films. The external EL efficiency was determined to be 0.43 and 0.32% for ITO/PEDOT:PSS/ 2 /Al and ITO/PEDOT:PSS/ 3 /Al LEDs, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1016–1027, 2007 相似文献
15.
16.
John A. Mikroyannidis Ioakim K. Spiliopoulos Theodoros S. Kasimis Abhishek P. Kulkarni Samson A. Jenekhe 《Journal of polymer science. Part A, Polymer chemistry》2004,42(9):2112-2123
Two new poly(p‐phenylene vinylene) derivatives OX1‐PPV and OX2‐PPV bearing two 1,3,4‐oxadiazole rings per repeat unit and a fully conjugated backbone with solubilizing dodecyloxy side groups were synthesized and investigated. The amorphous conjugated polymers had glass‐transition temperature values of 60–75 °C and emitted intense blue or greenish‐blue light in solution with photoluminescence (PL) emission maxima at 379–492 nm and PL quantum yields of 0.41–0.52. In the solid state they emitted yellowish‐green light with PL emission maxima at 533–555 nm. Cyclic voltammetry showed that both conjugated polymers had reversible reduction and irreversible oxidation, making them n‐type materials. The electron affinity of OX2‐PPV was estimated as 2.85 eV whereas that of OX1‐PPV was 2.75 eV. Yellow electroluminescence (EL) was achieved from single‐layer light‐emitting diodes of OX2‐PPV with an EL emission maximum at 555 nm and a brightness of 70 cd/m2. Polymer OX2‐PPV, which was functionalized with 2,6‐bis(1,3,4‐oxadiazole‐2‐yl)pyridine, demonstrated sensitivity to various metal ions as a fluorescence‐mode chemosensor. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2112–2123, 2004 相似文献
17.
Liang Liao Ali Cirpan Qinghui Chu Frank E. Karasz Yi Pang 《Journal of polymer science. Part A, Polymer chemistry》2007,45(10):2048-2058
Copolymers containing oligo(phenylene vinylene) (2.5), fluorene, and 4,4‐dihexyldithienosilole (DTS) units were synthesized and characterized. The π‐conjugated monomers were joined with the palladium(0)‐catalyzed Suzuki–Miyaura coupling reaction, thus forming either biphenyl– or phenyl–thiophene linkages. These polymers were photoluminescent, with the fluorescent quantum efficiency between 54 and 63% and with λmax for fluorescence at ~448 nm in tetrahydrofuran. The presence of 5% DTS in the copolymers had little influence on the optical absorption and emission wavelengths. Double‐layer light‐emitting‐diode devices using these polymers as emissive layers had low turn‐on voltages (3.5–4 V) and moderate external quantum efficiencies (0.14–0.30%). The results show that DTS plays a positive role in improving the charge‐injection characteristics of poly(phenylene vinylene) materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2048–2058 相似文献
18.
Yang‐Liang Fan King‐Fu Lin 《Journal of polymer science. Part A, Polymer chemistry》2005,43(12):2520-2526
The presence of cis‐vinylene bonds in Gilch‐polymerized poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐1,4‐phenylene vinylene] is reported. Through fractionation, species with a weight‐average molecular weight of less than 37,000 exhibited an abnormal blueshift of photoluminescence spectra in toluene solutions, and this was attributed to the presence of cis‐vinylene bonds, as verified by NMR spectroscopy. Surprisingly, the fractionated species (~1 wt %) with a weight‐average molecular weight of 5000 were mostly linked by the cis‐vinylene bonds. The concentration decreased with the molecular weight until a molecular weight of 37,000 was reached; at that point, the polymer chains contained mainly trans‐vinylene bonds. Obviously, the formation of cis‐vinylene bonds strongly inhibited the growth of polymer chains during Gilch polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2520–2526, 2005 相似文献
19.
It is the general consensus that in Gilch polymerizations the 1,4‐bis(chloromethylene)benzene starting material first changes into p‐quinodimethane intermediates which then act as the real monomers. However, direct observation of these intermediates has not been possible so far. This is because usually the p‐quinodimethane auto‐initiates its rapid radical polymerization instantaneously, keeping its concentration extremely low throughout the whole process. Here it is shown that, when the reaction is carried out at very low temperatures, the formation of p‐quinodimethane still proceeds but chain growth is suppressed. Hence, the concentration of the active monomer reaches a level sufficient for NMR analysis.
20.
Sheng‐Hsiung Yang Shiang‐Ying Chen Yu‐Chun Wu Chain‐Shu Hsu 《Journal of polymer science. Part A, Polymer chemistry》2007,45(15):3440-3450
A new series of poly(2,3‐diphenyl‐1,4‐phenylenevinylene) derivatives containing dendritic side groups were synthesized. Different generations of dendrons were integrated on the pendant phenyl ring to investigate their effect on optical and electrical properties of final polymers. Homopolymers can not be obtained via the Gilch polymerization because of sterically bulky dendrons. By controlling the feed ratio of different monomers during polymerization, dendron‐containing copolymers with high molecular weights were obtained. The UV–vis absorption and photoluminescent spectra of the thin films are pretty close; however, quantum efficiency is significantly enhanced with increasing the generation of dendrons. The electrochemical analysis reveals that hole‐injection is also improved by increasing dendritic generation. Double‐layer light‐emitting devices with the configuration of ITO/PEDOT:PSS/polymer/Ca/Al were fabricated. High generation dendrons bring benefit of improved device performance. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3440–3450, 2007 相似文献