首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four types of innovative benzophenone (BPh)‐ or aryl azide (ArAz)‐containing photoreactive polycarbazole (polyCbz)‐based microparticles (MPs) were prepared using an oxidative liquid phase polymerization system. Their photochemical reactivity was evaluated by their reaction with highly inert poly(2‐chloro‐paraxylelene) (Parylene C) films. Possible mechanisms for the photochemical reaction of those MPs with Parylene C were discussed. The highly photoreactive BPh was found to react more inside the particle causing internal cross‐linking of MP polyCbz chains, fusion between adjoining particles and deformation of their spherical structure. In contrast, the less reactive but more selective ArAz‐containing MPs were found to react much more with Parylene C. The strong reactivity of such photoreactive MPs toward Parylene C films emphasizes a general method for the functionalization of stable nonfunctional polymeric coatings. This paves the way to simple and solvent‐free functionalization of nonfunctional coatings and materials by light. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Herein, novel host–guest films produced by coarse vacuum cosublimation of the parylene C dimer and Eu(tta)3phen are prepared and studied. Eu(tta)3phen sublimation at different temperatures allows films with different concentrations of the Eu complex to be obtained. The films are characterized by Rutherford backscattering spectrometry (RBS), FTIR spectroscopy, X‐ray diffraction (XRD), atomic force microscopy (AFM), and UV/Vis absorption and emission spectroscopy. RBS, FTIR, and XRD reveal the incorporation of Eu(tta)3phen into the parylene matrix. AFM evidences the very flat film surface, which is particularly advantageous for optical applications. UV/Vis absorption and emission analyses confirm that the optical properties of Eu(tta)3phen are preserved in the deposited films. Fluorescence measurements evidence the occurrence of an energy‐transfer process between parylene and Eu(tta)3phen, and this results in an increase in the light emitted by the Eu complex that is as much as five times higher than that emitted by Eu(tta)3phen alone.  相似文献   

3.
A main‐chain, azoaromatic, chromophore‐functionalized polyelectrolyte with an oligomeric molecular weight was synthesized by the reaction of 4,4′‐azobispyridine and 1,6‐dibromohexane. The polyelectrolyte was designed to contain ionic groups to impart electrostatic self‐assembly with polyanion and azoaromatic groups for photoprocessability. The polymer solution exhibited a solvatochromic effect, having different absorption maxima in water (294 nm) and N,N‐dimethylformamide (400 nm). By a change in the counteranions of the bispyridinium groups, the solubility of the polymer could be controlled, and this made it possible to fabricate electrostatic assembled films or spin‐cast films for further applications. The direct photofabrication of laser‐induced interference patterns on polymer surfaces with large surface modulation was also investigated with an argon ion laser. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1196–1201, 2003  相似文献   

4.
Parylenes belong to a family of polymers that have been investigated for use in electronic and medical applications. The photooxidation of these materials is of interest both to prevent degradation and to induce targeted chemical changes. This article describes a transport and reaction model for the photooxidation of parylenes. This model is based on existing polymer photooxidation mechanisms that have been adapted to this system. The model has been compared with existing parylene photooxidation data for this system and shows qualitative agreement with surface oxidation profiles and oxidation depth profiles. On the basis of the results of the model comparison, it has been determined that the key parameters that appear to affect the photooxidation of parylenes are the diffusion coefficient of oxygen in these films and the concentration of oxygen initially present in these films. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2666–2677, 2004  相似文献   

5.
Two possible mechanisms for the reaction of four halogenated (metha)acrylate‐based molecules with Parylene [poly (paraxylylene)] during its chemical vapor deposition were proposed. The chemical reactivity of acrylate double bond with the paraxylylene biradical was calculated for all four (metha)acrylate‐based molecules. These calculations allowed the evaluation of the energetically favorable mechanism and indeed a direct correlation was found between both predicted and experimental reactivities. Next, the reactivity of the (metha)acrylate‐modified Parylene films was evaluated through their reaction with different amines. The obtained amidated Parylene films were characterized with X‐ray photoelectron spectroscopy, Kaiser test for primary amines, and fluorescence microscopy. The strong reactivity of (metha)acrylate‐modified Parylene films toward nucleophilic substitution emphasizes a general method for the functionalization of self‐supported Parylene films grown on the reacting solutions using the novel solid on liquid deposition process. This paves the way to the development of multifunctional materials in a one‐step process resulting from the deposition Parylene over liquid patterns. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
The surfaces of poly(styrene‐co‐acrylic acid) copolymers and their Na‐ and Cs‐neutralized ionomers were modified by O2‐plasma source ion implantation (PSII) treatment to improve the surface wettability. The changes in the surface wettability, composition, and structure upon the PSII treatment were examined with contact‐angle measurements and X‐ray photoelectron spectroscopy. The untreated surfaces of the acid copolymers and ionomers exhibited different surface energies; this implied clearly that the type of ion species affects the surface hydrophilicity. Also, the PSII treatment induced oxygen‐containing groups to reside on the surface and ionic groups to come out toward the surface; this made the surfaces of the ionomers more hydrophilic as compared with that of the acid copolymers. The ionomers also showed slow hydrophobic recovery. Thus, it was suggested that the reduced mobility of the polymer chain because of the presence of ionic aggregates results in restricted reorientation of oxygen‐containing groups. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1791–1797, 2003  相似文献   

7.
Thermoreversible polymeric biomaterials are finding increased acceptance in tissue engineering applications. One drawback of the polymers is their synthetic nature, which does not allow direct interaction of mammalian cells with the polymers. This limitation may be alleviated by grafting arginine–glycine–aspartic acid (RGD) containing peptides onto the polymer backbone to facilitate interactions with cell‐surface integrins. Toward this goal, N‐isopropylacrylamide (NiPAM)‐based thermoreversible polymers containing amine‐reactive N‐acryloxysuccinimide (NASI) groups were synthesized. Conjugation of RGD‐containing peptides to polymers was demonstrated with 1H NMR spectroscopy and reverse‐phase high‐pressure liquid chromatography. The conjugation reaction was optimal at 4 °C and pH of 8.0, and increased with the increasing NASI content of polymers. With a peptide grafting ratio of 0.25 mol %, there was no significant change in the lower critical solution temperature of the polymers. Finally, the NASI‐containing polymers, cast as films, on tissue culture polystyrene, were shown to conjugate to RGD‐containing peptides and support C2C12 cell attachment. We conclude that NASI‐containing thermoreversible polymers are amenable for grafting biomimetic peptides to impart cell adhesiveness to the polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3989–4000, 2003  相似文献   

8.
Multilayer films were assembled from a strong polyelectrolyte (poly(diallyldimethylammonium chloride), PDADMAC) and a copolymer containing both strongly charged styrene sulfonate moieties and weakly charged maleic acid moieties (poly(4‐styrenesulfonic acid‐co‐maleic acid), PSSMA). Growth of PSSMA/PDADMAC multilayers was linear, as characterized by UV‐vis spectroscopy and quartz crystal microgravimetry. The influence of both the pH of the PSSMA adsorption solutions and the ratio of SS:MA in the PSSMA on multilayer properties was investigated. Fourier transform infrared spectroscopy results showed that the ionization of carboxylic acid groups in PSSMA/PDADMAC multilayers did not vary significantly with changes in the PSSMA assembly pH. However, the multilayers showed different thicknesses, surface morphologies, and stability to post‐assembly pH treatment. We also demonstrate that PSSMA/PDADMAC multilayers are significantly more stable than PSSMA/PAH multilayers after post‐assembly pH treatment (i.e. the films remain intact when exposed to pH extremes). In addition, the surface morphology of two films (PSSMA 1:1 assembled at pH 5.8, post‐treated at pH 2 and PSSMA 3:1 assembled at pH 5.8, post‐treated at pH 11) changed significantly when the films were exposed to solutions of different pH and, in the former case, this change in film morphology was reversible. The porous morphology after treatment at pH 2 could be reversed to give a significantly smoother film after subsequent exposure to water for 24 h. Our results demonstrate that by the rational choice of the assembly pH of PSSMA, stable and pH‐responsive films can be obtained via the sequential assembly of PSSMA and PDADMAC. These films have potential in controlled release applications where film stability and pH‐responsive behavior are essential. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4341‐4351, 2007  相似文献   

9.
The free‐radical polymerization of styrene initiated from a functionalized poly(ethylene terephthalate) (PET) surface yielded a tethered polymer layer. The anchoring of the initiator species on the PET surface was performed from surface‐reactive groups easily generated by an alkaline hydrolysis of PET. After each surface modification, PET films were characterized by X‐ray photoelectron spectroscopy, measurements of water contact angles, and time‐of‐flight secondary‐ion mass spectrometry. The influence of the polymerization duration, the grafted initiator density, and the grafting mode on the efficiency of the surface‐initiated polymerization of styrene was investigated. In some cases, the tethering of the polystyrene layer on PET could be a reversible process. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1347–1359, 2003  相似文献   

10.
Electron spin resonance spectroscopy revealed that some free radicals were trapped in the precipitated polymer during the precipitation polymerization of acrylamide conducted in nonsolvents of the polymer [t‐butyl alcohol (TBA), acetone and methanol]. The trapped radical concentration decreased with an increase in the chain‐transfer activity of the aforementioned liquids. A 100% polymerized acrylamide in TBA prepared with a 10% monomer concentration and a 3 × 10?3 mol/dm3 azobisisobutyronitrile concentration at 50 °C contained approximately 2 radicals per 100 polymer molecules. The trapped radicals on exposure to air decayed with time according to second‐order kinetics. The rate constant was evaluated and found to be in reasonably good agreement with the rate constant evaluated from data published long ago for the decay of trapped polyacrylonitrile radicals following their exposure to air. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1192–1197, 2003  相似文献   

11.
Protoporphyrin IX and zinc protoporphyrin IX were grafted to the surface of nylon‐6,6 films via an ethylene diamine bridge and a poly(acrylic acid) (PAA) scaffold. X‐ray photoelectron spectroscopy showed that approximately 57% of the nylon surface was covered by PAA and approximately 6% of the carboxylic acid groups in PAA were grafted to the ethylene diamine derivative of protoporphyrin IX or its zinc salt. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 41–47, 2003  相似文献   

12.
A new trifluoromethyl‐substituted bis(ether amine) monomer, 2,7‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene, was synthesized. It led to a series of novel fluorinated polyimides by thermal and chemical imidization routes when reacted with various commercially available aromatic tetracarboxylic dianhydrides. Most of the polyimides obtained from both routes were soluble in many organic solvents, such as N,N‐dimethylacetamide. All the polyimides could afford transparent, flexible, and strong films with low moisture absorptions of 0.3–0.6%, low dielectric constants of 2.52–3.27 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 377–436 nm. The glass‐transition temperatures of the polyimides were in the range of 244–297 °C, and the 5% weight‐loss temperatures were higher than 550 °C. For a comparative study, a series of analogous polyimides based on 2,7‐bis(4‐aminophenoxy)naphthalene were also prepared and characterized. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2001–2018, 2003  相似文献   

13.
Nanoparticle polymer composite capacitors have been examined for some time as a route to high performance, printable capacitors. One approach to creating these composites is to use a particle film together with vapor deposited polymers, which can yield high performance, but also forms a structurally asymmetric device. The performance of a nanoparticle (Ba, Sr)TiO3 (BST)/parylene‐C composite capacitor is compared to that of a nanoparticle BST capacitor without the polymer layer under both directions of bias. The composite device shows a five orders of magnitude improvement in the leakage current under positive bias of the bottom electrode relative to the pure‐particle device, and four orders of magnitude improvement when the top electrode is positively biased. The voltage tolerance of the device is also improved and asymmetric (44 V vs. 28 V in bottom and top positive bias, respectively). This study demonstrates the advantage of this class of composite device construction, but also shows that proper application of the device bias in this type of asymmetrical system can yield an additional benefit. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

14.
Benzophenone‐containing, anhydride‐terminated hyperbranched poly(amic acid)s were end‐capped by ortho‐alkyl aniline in situ and then chemically imidized, yielding autophotosensitive hyperbranched polyimides. The polyimides were soluble in strong polar solvents, such as N‐methyl‐2‐pyrrolidone, N‐dimethylformamide, dimethylacetamide, and dimethyl sulfoxide. Thermogravimetric analysis revealed their excellent thermal stability, with a 5 wt % thermal loss temperature in the range of 527–548 °C and a10 wt % thermal loss temperature in the range of 562–583 °C. The strong absorption of the polyimide films in ultraviolet–visible spectra at 365 nm indicated that the hyperbranched polyimides were patternable. Highly resolved images with a line width of 6 μm were developed by ultraviolet exposure of the polymer films. A well‐defined image with lines as thin as 3 μm was also patterned, but the lines were rounded at the edges. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2026–2035, 2003  相似文献   

15.
The surface modification of the fullerene‐like hydrogenated carbon (FL‐C:H) film was achieved by bombardment using Ar, H, and N ions, respectively. A systematic comparison of X‐ray photoelectron spectroscopy (XPS) and Fourier transformation infrared(FTIR) spectra was made between the FL‐C:H film and ion‐bombarded films. The results show that ion bombardment resulted in the increase of sp3 C content, specially, new C? N bonds were formed for N‐ion‐bombarded film. The contact angle (CA) and friction coefficient of those films were measured. The surface free energy evaluated from the contact angle increased for ion‐bombarded films, and the most obvious increase was obtained for N‐ion‐bombarded film. The friction coefficient decreased for H‐ion‐bombarded film whereas it increased for N‐ion‐bombarded film, and the friction coefficient of Ar‐ion‐bombarded film was close to that of the FL‐C:H film. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The influence of the surface chemistry of the cellulose fiber and polymer matrix on the mechanical and thermal dynamic mechanical properties of cellulose‐fiber‐reinforced polymer composites was investigated. The cellulose fiber was treated either with a coupling agent or with a coupling‐agent treatment followed by the introduction of quaternary ammonium groups onto the fiber surface, whereas the polymer matrix, with opposite polar groups such as polystyrene incorporated with sulfonated polystyrene and poly(ethylene‐co‐methacrylic acid), was compounded with the fiber. The grafting of the fiber surface was investigated with Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy. Experimental results showed that an obvious improvement in the mechanical strength could be achieved for composites with an ionic interface between the fiber and the polymer matrix because of the adhesion enhancement of the fiber and the matrix. The improved adhesion could be ascribed to the grafted ionic groups at the cellulose‐fiber surface. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2022–2032, 2003  相似文献   

17.
Two phase separating block copolymers equipped with functional groups (acid and alkyne) were synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization. Thin films of these materials were prepared and examined with regard to surface morphology, surface composition, and film stability. Self‐assembled structures with domain sizes of about 40 nm were detected through atomik force microscopy (AFM) analysis while X‐ray photoelectron spectroscopy measurements revealed a balanced surface exposure of the two segregated phases. Thus, reactive groups being present in both phases are specifically provided within nanoscopic surface areas. The films showed good stability on exposure to various solvents but the self‐organized surface patterns were only resistant toward ethanol. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
The application of surface‐attached, thiol‐ene polymer films for controlling material properties in a gradient fashion across a surface was investigated. Thiol‐ene films were attached to the surface by first depositing a thiol‐terminated self‐assembled monolayer and performing a thiol‐ene photopolymerization reaction on the surface. Property gradients were created either by creating and modifying a gradient in the surface thiol density in the SAM or by changing the polymerization conditions or both. Film thickness was modified across the substrate by changing either the density of the anchoring thiol functional groups or by changing the reaction conditions such as exposure time. Thicker films (1–11 nm) were obtained by polymerizing acrylate polymer brushes from the surface with varying exposure time (0–60 s). The two factors, that is, the surface thiol density and the exposure time, were combined in orthogonal directions to obtain thiol‐ene films with a two‐dimensional thickness gradient with the maximum thickness being 4 nm. Finally, a thiol‐acrylate Michael type addition reaction was used to modify the surface thiol density gradient with the cell‐adhesive ligand, Arg‐Gly‐Asp‐Ser (RGDS), which subsequently yielded a gradient in osteoblast density on the surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7027–7039, 2006  相似文献   

19.
The copolymerization of 1,5‐dioxepan‐2‐one (DXO) and ε‐caprolactone, initiated by a five‐membered cyclic tin alkoxide initiator, was performed in chloroform at 60 °C. Copolymers with different molar ratios of DXO (25, 40, and 60%) were synthesized and characterized. 13C NMR spectroscopy of the carbonyl region revealed the formation of copolymers with a blocklike structure. Differential scanning calorimetry measurements showed that all the copolymers had a single glass transition between ?57 and ?49 °C and a melting temperature in the range of 30.1–47.7 °C, both of which were correlated with the amount of DXO. An increase in the amount of DXO led to an increase in the glass‐transition temperature and to a decrease in the melting temperature. Dynamic mechanical thermal analysis measurements confirmed the results of the calorimetric analysis, showing a single sharp drop in the storage modulus in the temperature region corresponding to the glass transition. Tensile testing demonstrated good mechanical properties with a tensile strength of 27–39 MPa and an elongation at break of up to 1400%. The morphology of the copolymers was examined with polarized optical microscopy and atomic force microscopy; the films that crystallized from the melt showed a short fibrillar structure (with a length of 0.05–0.4 μm) in contrast to the untreated solution‐cast films. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2412–2423, 2003  相似文献   

20.
Using ionic source assistant, Ti and N co‐doped amorphous C (α‐C:N:Ti) thin films were prepared by pulse cathode arc technique. Microstructure, composition, elemental distribution, morphology, and mechanical properties of α‐C:N:Ti films were investigated in dependence of nitrogen source, pulse frequency, and target current by Raman spectroscopy, X‐ray diffraction, scanning electron microscopy, X‐ray photoelectron spectroscopy, atomic force microscopy, nanoindentation, and surface profilometer. The results show the presence of titanium carbide and nitride in a‐C:N:Ti films. The α‐C:N+:Ti film (6 Hz, 60 A) shows the smaller size and the higher disordering degree of Csp2 clusters. The α‐C:N+:Ti films present smoother surface and smaller particle size than for α‐C:N2:Ti films. N ions facilitate the formation of N‐sp3C bonds in the α‐C:N+:Ti films, and α‐C:N+:Ti (10 Hz, 80 A) film possesses the more graphite‐like N bonds. Higher hardness and lower residual stress present in the α‐C:N2:Ti (10 Hz, 80 A) film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号