首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical reactions occurring in the melt mixing of nylon6/polycarbonate (Ny6/PC) at 240°C were investigated. The reaction of equimolar Ny6/PC blends can be reconciled within the overall scheme of an exchange reaction occurring with the attack of active amino terminals on the inner carbonate groups. We have performed the synthesis of low molecular weight amino-terminated nylon 6 and the effect of the active amino terminal groups on the exchange kinetics was investigated. The exchange reaction yields sizeable amounts of copolymer, in fact after 75 min of melt mixing the (initially equimolar) blend contains 30 mol of unreacted PC and 70 mol of Ny6/PC copolymer (all the Ny6 was therefore incorporated in the copolymer). Trifluoroacetylation of nylon 6 was used to produce CHCl3-soluble Ny6/PC copolymers, that could be analyzed by NMR. The NMR analysis yielded, beside the copolymer composition, evidence of the presence of urethane units interconnecting the Ny6 and PC blocks. The amount of urethane units increased with the reaction time, indicating a reduction of the block size as a function of the extent of exchange. Our study established the structure of the products formed, provided the materials balance of the process, and investigated some salient kinetic aspects. A thermal degradation study was also performed by thermogravimetry and direct pyrolysis mass spectrometry, to identify the products formed in the thermal treatment of the blends and to investigate the possible role of the inner amide groups in the intermolecular exchange reactions occurring between Ny6 and PC. Our results prove that these reactions occur above 300°C, and that only the cleavage of carbonate groups, by means of Ny6 amino end groups, is actually occurring at 240°C. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Poly(ethylene terephthalate)‐poly(m‐xylylene adipamide) PET‐MXD6 copolymers were prepared by reactive blending of equimolar PET/MXD6 blends at 285 °C for different times in presence of terephthalic acid (1 wt %). First, the partial hydrolysis of PET and MXD6 occurs, yielding oligomers terminated with the reactive aromatic carboxyl groups. These oligomers quickly react with ester and amide inner groups producing a PET‐MXD6 copolymer that may compatibilize the initial biphasic blend. In this homogeneous environment, the aliphatic carboxyl‐terminated MXD6 chains, inactive in the initial biphasic blend, may promote the exchange reactions determining the formation of a random copolymer at longer reaction time (120 min). The progress of exchange reactions, and the microstructure of the formed copolyesteramides, versus the reaction time was followed by 1H and 13C NMR analyses using a CDCl3/TFA‐d/(CF3CO)2O mixture as solvent and applying appropriate mathematical models. Dyads and triads sequences were thoroughly characterized by NMR. Semicrystalline block copolymers were obtained at reaction time lower than 45 min. All PET‐MXD6 copolymers show a single Tg that change as a function of the dyads molar composition in the copolymers. The measured Tg values match with those calculated by a proposed modified Fox equation that take into account the weight fraction of the four dyad components of the PET‐MXD6 copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
A method including cryogenic grinding, melt pressing from the molten state, and quenching was used to prepare blends of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalene 2,6‐dicarboxylate) (PEN) in which the two phases were highly dispersed. The effect of melt‐pressing times on the thermal properties and relaxation behavior of PET/PEN films were characterized with differential scanning calorimetry and dielectric spectroscopy. For short melt‐pressing times, two glass‐transition, two crystallization, and two melting peaks were observed, indicating the presence of PET‐rich and PEN‐rich phases in these blends. Longer melt‐pressing times revealed a single glass transition and a single α‐relaxation process, showing that PET–PEN block copolymers were likely to be formed during the melt pressing. The experimental findings were examined in terms of the transesterification reactions between the blend components, as revealed by 1H NMR measurements. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2570–2578, 2002  相似文献   

4.
EVOH nanocomposites containing organically treated clays are unique systems in which the clay is strongly attracted to EVOH, thus affecting the morphology and the resultant thermal and mechanical properties. A strong effect of the processing conditions on morphology, thermal, and mechanical properties was observed. In highly interacting systems, under dynamic mixing conditions, in addition to a fracturing process of the clay particles, an onion‐like delamination process is suggested. EVA‐g‐MA and LLDPE‐g‐MA, having polar groups, were studied as compatibilizers to further induce clay intercalation and exfoliation. The compatibilizers affected both the thermal and mechanical properties of the composites at different levels. Thermal analysis showed that with increasing compatibilizer content lower crystallinity levels result, until at a certain content no crystallization has taken place. A Ny‐6 (nylon‐6)/EVOH blend is an interesting host matrix for incorporation of low organoclay contents. The Ny‐6/EVOH blend is a unique system that tends to hydrogen bond and also to in situ chemically react during melt mixing. The addition of clay seems to interrupt the chemical reaction between the two host polymers at certain compositions, leading to lower melt blending torque levels when clay is present. A competition between Ny‐6 and EVOH regarding the intercalation process takes place. However, Ny‐6 seems to lead to exfoliated structures, whereas EVOH forms intercalated structures, as revealed from combined XRD and TEM experiments, owing to thermodynamic considerations and preferential localization of the clay in Ny‐6. Of special interest is the increased storage modulus seen by the presence of only 1 wt % clay, which was achieved by extrusion under high shear forces, leading to a completely exfoliated structure. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1931–1943, 2005  相似文献   

5.
Nylon‐6/glass‐fiber (GF)/liquid‐crystalline‐polymer (LCP) ternary blends with different viscosity ratios were prepared with three kinds of nylon‐6 with different viscosities as matrices. The rheological behaviors of these blends were characterized with capillary rheometry. The morphology was observed with scanning electron microscopy and polarizing optical microscopy. This study showed that although LCP did not fibrillate in binary nylon‐6/LCP blends, LCP fibrillated to a large aspect ratio in some ternary blends after GF was added. The addition of 5 wt % LCP significantly reduced the melt viscosity of nylon‐6/GF blends to such an extent that some nylon‐6/GF/LCP blends had quite low viscosities, not only lower than those of neat resins and nylon‐6/GF blends but also lower than those of corresponding nylon‐6/LCP blends. The mutual influence of the morphology and rheological properties was examined. The great reduction of the melt viscosity was considered the result of LCP fibrillation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1619–1627, 2004  相似文献   

6.
A low percentage of cyclic oligomers can be found in poly(ethylene terephthalate) (PET) from its synthesis onward. In this article, a cyclic‐oligomer‐free PET (COFP) obtained by solvent extraction was used to study the thermodynamics of the re‐formation of cyclics from the melt. The cyclic‐oligomer content re‐increased into molten COFP, finally reaching an equilibrium. An analysis of the fraction of the re‐formed cyclic oligomers showed that a majority of cyclic trimer (60–70%) was found at the equilibrium. Before the establishment of the equilibrium, an unusual behavior was observed in the relative proportion of cyclic trimer and tetramer during the first steps of their formation that was probably due to a competition between kinetic and thermodynamic products. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 416–422, 2000  相似文献   

7.
The effects of nylon 6 matrix viscosity and a multifunctional epoxy interfacial modifier on the notched impact strength of the blends of nylon 6 with a maleic anhydride modified polyethylene‐octene elastomer/semi‐crystalline polyolefin blend (TPEg) were studied by means of morphological observation, and mechanical and rheological tests. Because the viscosity of the TPEg is much higher than that of nylon 6, an increase in the viscosity of nylon 6 reduces the viscosity mismatch between the dispersed phase and the matrix, and increases notched impact strength of the blends. Moreover, addition of 0.3 to 0.9 phr of the interfacial modifier leads to a finer dispersion of the TPEg and greatly improves the notched impact strength of the nylon 6/TPEg blends. This is because the multi‐epoxy interfacial modifier can react with nylon 6 and the maleated TPEg. The reaction with nylon 6 increases the viscosity of the matrix while the coupling reaction at the interface between nylon 6 and the maleated TPEg leads to better compatibilization. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2664–2672, 1999  相似文献   

8.
Water absorption and other properties of polyamides can potentially be modified by blending with polyesters. The compatibility of a polyester ionomer melt‐blended with nylon‐6 is studied in this article, examining the effect of blending upon crystallization behaviors, morphology, thermal/mechanical properties, and water absorption. Comparisons of the crystallization behaviors of the ionomer/nylon‐6 blends with poly(ethylene terephthalate)/nylon‐6 blends suggest increased compatibility due to greater interactions between the two phases. The results indicate that the presence of a significant amount of the ionomeric groups is required to improve polyester compatibility with polyamides. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2091–2103, 2006  相似文献   

9.
Glycidyl methacrylate (GMA) functionalized acrylonitrile‐butadiene‐styrene (ABS) copolymers have been prepared via an emulsion polymerization process. The epoxy‐functionalized ABS (e‐ABS) particles were used to toughen nylon‐6. Molau tests and FTIR results showed the reactions between nylon‐6 and e‐ABS have taken place. Scanning electron microscopy (SEM) displayed the compatibilization reaction between epoxy groups of e‐ABS and nylon‐6 chain ends (amine or carboxyl groups), which improve disperse morphology of e‐ABS in the nylon‐6 matrix. The presence of only a small amount of GMA (1 wt %) within the e‐ABS copolymer was sufficient to induce a pronounced improvement of the impact strength of nylon‐6 blends; whereas further increase of the GMA contents in e‐ABS resulted in lower impact strength because of the crosslinking reaction between nylon‐6 and e‐ABS, resulting in agglomeration of the ABS particles. SEM results showed shear yielding of the nylon‐6 matrix and cavitation of rubber particles were the major toughening mechanisms. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2170–2180, 2005  相似文献   

10.
We clarify the reaction mechanisms and kinetics in melt‐reacted blends consisting of functional polysiloxanes and poly(butylene terephthalate) (PBT) with a model compound study. As models for polysiloxanes, we have selected two monodisperse ω‐functionalized siloxane oligomers with Si? H and Si? vinyl moieties. To mimic PBT, we have chosen low molecular weight compounds representative for in‐chain and end‐functional groups of the polymer; ester, carboxylic acid, alcohol, and vinyl. Uncatalyzed and platinum‐catalyzed reactions have been performed in sealed vials. Reaction products have been characterized by gradient polymer elution chromatography, Fourier transform infrared spectroscopy, and size exclusion chromatography. PBT functional groups reactive toward functional siloxane oligomers at high temperatures in the presence and absence of a catalyst have been identified, and an estimate of relative reaction kinetics has been provided. We suggest reaction mechanisms compatible with our results and with literature data. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1952–1961, 2002  相似文献   

11.
The chemical reactions occurring in the thermal treatment of bisphenol-A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) blends have been investigated by nuclear magnetic resonance (NMR), mass spectrometry (MS), size exclusion chromatography (SEC), and thermogravimetry (TG). Our results suggest that in the melt-mixing of PC/PMMA blends, at 230°C, no exchange reactions occur and that only the depolymerization reaction of PMMA has been observed. In the presence of an ester-exchange catalyst (SnOBu2), an exchange reaction was found to occur at 230°C, but no trace of PC/PMMA graft copolymer has been observed. Instead, an exchange reaction between the monomer methyl methacrylate (MMA), generated in the unzipping of PMMA chains, and the carbonate groups of PC has been suggested. This is due to the diffusion of MMA at the interface or even into the PC domains, where it can react with PC producing low molar mass PC oligomers bearing methacrylate and methyl carbonate chain ends and leaving the undecomposed PMMA chains unaffected. The TG curves of PC/PMMA blends prepared by mechanical mixing and by casting from THF show two separated degradation steps corresponding to that of homopolymers. This behavior is different from that of a transparent film of PC/PMMA blend, obtained by solvent casting from DCB/CHCl3, which shows a single degradation step indicating that the degradation rate of PC is increased by the presence of PMMA in the blend. The thermal degradation products obtained by DPMS of this blend consist of methyl methacrylate (MMA), cyclic carbonates arising from the degradation of PMMA and PC, respectively, and a series of open chain bisphenol-A carbonate oligomers with methacrylate and methyl carbonate terminal groups. The presence of the latter compounds suggests a thermally activated exchange reaction occurring above 300°C between MMA and PC. The presence of bisphenol-A carbonate oligomers bearing methyl ether end groups, generated by a thermally activated decarboxylation of the methyl carbonate end groups of PC, has also been observed among the pyrolysis products. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1873–1884, 1998  相似文献   

12.
Blends of carboxyl functionalized poly(phenylene sulfide) (PPS) and poly(ethylene terephthalate) (PET) were shown to undergo an ester interchange reaction during melt blending. Pendent carboxyl functionality randomly incorporated along the PPS chain reacts with the ester moiety of PET to form a graft copolymer. A model compound, 2,4-bis(phenylthio benzoic acid), has been synthesized to assist in defining the level of carboxyl functionality on the PPS chain. Evidence of the grafting reaction has been gathered from infrared spectroscopy, solubility measurements, and electron microscopy. When added to blends of PPS and PET homopolymers, the graft copolymer significantly reduces the average domain size of the dispersed phase across the entire composition range. This study describes the role that graft copolymers formed by ester interchange reactions can play in compatibilizing this immiscible blend system, with particular focus on the conditions leading to increased grafting efficiency. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3473–3485, 1999  相似文献   

13.
The effect of mixing conditions on the morphology, molten‐state viscoelastic properties, and tensile impact strength of polystyrene/polyethylene (80/20) blends compatibilized with styrene–butadiene block copolymers containing various numbers and lengths of blocks was studied. Under all mixing conditions, an admixture of a styrene–butadiene block copolymer led to a finer phase structure and to an increase in the dynamic viscosity, storage modulus, and tensile impact strength. The effects were stronger for S–B diblock with a short styrene block than for S–B–S–B–S pentablock with long styrene blocks (where S represents styrene and B represents butadiene). For all blends mixed longer than 2 min, the mixing time had only a small effect on their morphology and properties. Surprisingly, the localization of S–B diblock copolymers was strongly dependent on the rate of mixing. The mixing rate had a nonnegligible effect on the viscoelastic properties of the compatibilized blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 609–622, 2003  相似文献   

14.
研究了三种混合方式对于Nylon 6 PPO TPEg共混体系的影响 .混合是在双螺杆挤出机上进行的 .即(A)尼龙 6、聚苯醚和TPEg的混合物直接进行熔融挤出 ;(B)尼龙 6与TPEg的混合物预挤出 ,然后与聚苯醚熔融挤出 ;(C)聚苯醚和TPEg的混合物预挤出 ,然后与尼龙 6熔融挤出 .实验结果表明 ,混合方式不仅会影响共混物的形貌结构 ,而且会影响复合材料的最终性能 ,如力学性能、热性能和尺寸稳定性 .采用混合方式C所得的尼龙 6 聚苯醚复合材料的抗冲击强度高于用混合方式A和B所制备的复合材料 .这是因为聚苯醚和TPEg预共混时 ,聚苯醚上的OH基团和TPEg上的一部分马来酸酐发生化学反应 .然后预混物和尼龙 6熔融挤出时 ,剩下的马来酸酐再与尼龙分子上的NH2 基团反应 .这样就会形成一个好的界面层 ,它使复合材料的抗冲击强度大幅度提高 ,材料达到了超高韧性  相似文献   

15.
This article deals with a new way of improving the melt viscosity of linear poly(ethylene terephthalate) (PET) chains through the reaction of the PET end groups (alcohol and acid) with new chain extenders, 3‐(triethoxysilyl)propylsuccinic anhydride (ASSI) and 3‐glycidoxypropyltrimethoxysilane, during the melt processing of PET. The reactions, investigated with model compounds monomethylterephthalate and triethylene glycol monomethylether for PET? COOH and ? OH end groups, respectively, by multinuclear NMR spectroscopy (1H, 13C, and 29Si), provided evidence of well‐known acid–epoxide and alcohol–anhydride reactions, respectively. In addition, numerous other species appeared because of the presence of alkoxysilane groups, such as alcohol–alkoxysilane exchange reactions, acyloxysilane formation, and hydrolysis–condensation reactions of alkoxysilane. All these reactions led to the formation of branched chains when transposed to PET melt modification. A size exclusion chromatography analysis and the rheological behavior confirmed the presence of branched structures embedded in shorter linear PET chains. The rheological behavior of this blend was drastically modified in comparison with that of neat PET; consequently, there was an important increase in the zero‐shear viscosity, with a maximum concentration of branched structures of about 17 vol % obtained with an ASSI/PET molar ratio of 4. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2207–2223, 2005  相似文献   

16.
Immiscible ternary blends of PET/EVA/PP (PET as the matrix and (PP/EVA) composition ratio = 1/1) were prepared by melt mixing. Scanning electron microscope results showed core‐shell type morphology for this ternary blend. Binary blends of PET/PP and PET/EVA were also prepared as control samples. Two grades of EVA with various viscosities, one higher and the other one lower than that of PP, were used to investigate the effect of components' viscosity on the droplet size of disperse phase. The effect of interfacial tension, elasticity, and viscosity on the disperse phase size of both binary and ternary blends was investigated. Variation of tensile modulus of both binary and ternary blends with dispersed phase content was also studied. Experimental results obtained for modulus of PET/EVA binary blends, showed no significant deviations from Takayanagi model, where considerable deviations were observed for PET/PP binary blends. Here, this model that has been originally proposed for binary blends was improved to become applicable for the prediction of the tensile modulus of ternary blends. The new modified model showed good agreement with the experimental data obtained in this study. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 251–259, 2010  相似文献   

17.
Nylon‐6‐b‐polyimide‐b‐nylon‐6 copolymers were prepared by first synthesizing a series of imide oligomers end‐capped with phenyl 4‐aminobenzoate. The oligomers were then used to activate the anionic polymerization of molten ϵ‐caprolactam. In the block copolymer syntheses, the phenyl ester groups reacted quickly with caprolactam anions at 120 °C to generate N‐acyllactam moieties, which activated the anionic polymerization. In essence, nylon‐6 chains grew from the oligomer chain ends. All of the block copolymers had higher moduli and tensile strengths than those of nylon‐6. However, their elongations at break were much lower. The thermal stability, chemical resistance, moisture resistance, and impact strength were dramatically increased by the incorporation of only 5 wt % polyimide in the block copolymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4247–4257, 2000  相似文献   

18.
The influence of ZnO nanoparticles on the crystalline structures of nylon‐6 under different crystallization conditions (annealing at different temperatures from the amorphous solid, isothermal crystallization from the melt at different temperatures, and crystallization from the solution) has been examined with differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared. ZnO nanoparticles can induce the γ‐crystalline form in nylon‐6 when it is cooled from the melted state and annealed from the amorphous solid. This effect of ZnO nanoparticles increases with decreasing particle size and changes under different crystallization conditions. The effects of ZnO nanoparticles on the crystallization kinetics of nylon‐6 have also been studied with DSC. The results show that ZnO nanoparticles have two competing effects on the crystallization of nylon‐6: inducing the nucleation but retarding the mobility of polymer chains. Finally, the melting behavior of the composites has been investigated with DSC, and the multiple melting peaks of composites containing ZnO nanoparticles and pure nylon‐6 are ascribed to the reorganization of imperfect crystals. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1033–1050, 2003  相似文献   

19.
Polypropylene (PP) and polyamide‐6 (Ny‐6) blends with a 70/30 composition have been studied by broadband dielectric spectroscopy. The unmodified blends are immiscible, and 10% of PP functionalized with maleic anhydride was added as a compatibilizer. The influence of the compatibilizer on the water sorption and on the molecular dynamics of the Ny‐6 phase is followed by the changes induced in the dielectric loss spectra of these blends in both wet and dry states. The shortest range motions are unaffected by the compatibilizer in the dry state, but a higher water sorption is observed in the unmodified blend. Higher activation energies are found for the β relaxation in the dry blends than for the Ny‐6 homopolymer, showing the existence of constraints on these longer scale motions. During increasing temperature experiments, two segmental modes are recorded, the lower temperature mode corresponding to the plasticized material; as the temperature is raised, a second cooperative mode is found, originating in the dry Ny‐6 amorphous phase, rigidized by the loss of moisture. The comparison of the dielectric strengths of the modes shows that the unmodified blend absorbs more water than the compatibilized blend. The segmental dynamics are unaffected by compatibilization. At high temperatures, the high temperature tail of the segmental mode is much higher in the absence of the compatibilizer. The contribution of a peak due to interfacial polarization is lowered by the presence of the compatibilizer, which makes the interface more diffuse and the trapping of free carriers less effective. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1408–1420, 2005  相似文献   

20.
The surface structures of three kinds of poly(ethylene oxide)‐segmented nylon (PEO‐Ny) molten films were investigated using a scanning electron microscopy (SEM), an electron spectroscopy for a chemical analysis (ESCA), and a static secondary ion mass spectrometry (SSIMS). The PEO‐Ny's used were high semicrystalline PEO‐segmented poly(iminosebacoyliminohexamethylene) (PEO‐Ny610), low semicrystalline PEO‐segmented poly(iminosebacoylimino‐m‐xylene) (PEO‐NyM10), and amorphous PEO‐segmented poly(iminoisophthaloyliminomethylene‐1,3‐cyclohexylenemethylene) (PEO‐NyBI). SEM observations show that the surfaces of the PEO‐Ny610 and PEO‐NyM10 films are composed of spherulite, and that PEO‐NyBI film has a smooth surface. The results of ESCA and SSIMS exhibit the significant enrichments of PEO segment at the surfaces of all the films regardless of the crystallinity. The reason for the enrichment of PEO segment was discussed in terms of the surface tension of the corresponding homopolymers in the melting state. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1045–1056, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号