首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A solid‐supported samarium enolate successfully initiated the polymerization of 2‐(trimethylsilyloxy)ethyl methacrylate (TMS‐HEMA) through the living anionic process. In addition, the silyl group was readily removed by treatment of the beads with a weak acid to afford the corresponding well‐defined poly(methacrylate) having a hydroxyethyl group in the side chain (PHEMA). The hydroxyl group of the immobilized PHEMA on the beads was successfully acetylated to give poly(2‐acetoxyethyl methacrylate), which could be quantitatively isolated from the beads by trifluoroacetic acid treatment. Moreover, the hydroxyl group of the immobilized PHEMA could be utilized as an initiator for acid promoted ring opening polymerization of lactone to yield the corresponding graft copolymer. In this method, the residual and excess reagents could be removed by filtration, which demonstrated the applicability of the present technique to a novel method for construction of functional polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4417–4423, 2004  相似文献   

2.
3.
4.
A poly(p‐phenylene) (PPP)‐poly(4‐diphenylaminostyrene) (PDAS) bipolar block copolymer was synthesized for the first time. A prerequisite prepolymer, poly(1,3‐cyclohexadiene) (PCHD)‐PDAS binary block copolymer, in which the PCHD block consisted solely of 1,4‐cyclohexadiene (1,4‐CHD) units, was synthesized by living anionic block copolymerization of 1,3‐cyclohexadiene and 4‐diphenylaminostyrene. To obtain the PPP‐PDAS bipolar block copolymer, the dehydrogenation of this prepolymer with quinones was examined, and tetrachloro‐1,2‐(o)‐benzoquinone was found to be an appropriate dehydrogenation reagent. This dehydrogenation reaction was remarkably accelerated by ultrasonic irradiation, effectively yielding the target PPP‐PDAS bipolar block copolymer. The hole and electron drift mobilities for PPP‐PDAS bipolar block copolymer were both on the order of 10?3 to 10?4 cm2/V·s, with a negative slope when plotted against the square root of the applied field. Therefore, this bipolar block copolymer was found to act as a bipolar semi‐conducting copolymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
We have introduced a facile synthetic route for well‐defined A2B miktoarm star copolymer composed of regioregular poly(3‐hexylthiophene) and poly(methyl methacrylate) ((P3HT)2PMMA) by the combination of anionic polymerization and click reaction. First, we synthesized PMMA terminated with 1,3,5‐tris(bromomethyl)benzene (PMMA‐(Br)2) by anionic polymerization, and two bromines attached to the end of the PMMA chains were replaced by azides (PMMA‐(N3)2). Also, monoethynyl‐capped P3HT was synthesized by Grignard metathesis polymerization and post‐end functionalization. Then, copper(I)‐catalyzed Huisgen 1,3‐dipolar cycloaddition click reaction between monoethynyl‐capped P3HT and PMMA‐(N3)2 was performed to synthesize (P3HT)2PMMA. We used a slightly excess amount of monoethynyl‐capped P3HT so that all of the azide groups at the end of the PMMA chains completely reacted with monoethynyl‐capped P3HT. After complete removal of unreacted monoethynyl‐capped P3HT by column chromatography, pure (P3HT)2PMMA with narrow molecular weight distribution (the polydispersity of 1.18) was obtained. The weight fraction of P3HT and the total molecular weight of (P3HT)2PMMA are 0.48 and 16,000, respectively. To investigate the effect of the chain architecture on optical property and thin‐film morphology, we synthesized two linear P3HT‐b‐PMMAs (P3HT‐b‐PMMA‐L and P3HT‐b‐PMMA‐H) with similar weight fraction of P3HT block (0.48 for P3HT‐b‐PMMA‐L and 0.45 for P3HT‐b‐PMMA‐H) but two different total molecular weights (7900 for P3HT‐b‐PMMA‐L and 15,300 for P3HT‐b‐PMMA‐H). UV–visible (UV–vis) absorption spectrum and the fibril width of (P3HT)2PMMA thin film were similar to those of P3HT‐b‐PMMA‐L thin film. However, UV–vis spectrum for P3HT‐b‐PMMA‐H thin film was red‐shifted and the fibril width of P3HT‐b‐PMMA‐H was much larger than that of (P3HT)2PMMA. This indicates that the π–π interaction between P3HT arms in (P3HT)2PMMA is strong enough to arrange two P3HT backbone chains in (P3HT)2PMMA to stack one by one along the nanofibril axis. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
A living polymerization of ethylphenylketene (EPK) was accomplished. When polymerization of EPK was carried out with butyllithium as an initiator in tetrahydrofuran (THF) at −20 °C, EPK was completely consumed within 5 min, and the corresponding polyester with narrow molecular weight distribution (Mw /Mn ∼ 1.1) was obtained almost quantitatively. Kinetic study of the polymerization at −78 °C revealed that conversion of EPK agreed with the first‐order kinetic equation, and that Mn of the polymer increased in virtually direct proportion to the conversion. Along with these results, successful results in postpolymerization at −20 °C strongly supported living mechanism of the present polymerization. Further, lithium alkoxides having a methoxy group, styryl moiety, and nitroxyl radical, also successfully initiated polymerization of EPK to afford the corresponding polymers having functional initiating ends. In the polymerization with varying feed ratio [EPK]0/[initiator]0, the linear relationship between the feed ratio and Mn of the obtained polymer was observed, while maintaining narrow Mw /Mn. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1073–1082, 2000  相似文献   

7.
The synthesis of well‐defined poly(methyl methacrylate)‐block‐poly(ethylene oxide) (PMMA‐b‐PEO) dibock copolymer through anionic polymerization using monohydroxy telechelic PMMA as macroinitiator is described. Living anionic polymerization of methyl methacrylate was performed using initiators derived from the adduct of diphenylethylene and a suitable alkyllithium, either of which contains a hydroxyl group protected with tert‐butyldimethylsilyl moiety in tetrahydrofuran (THF) at ?78 °C in the presence of LiClO4. The synthesized telechelic PMMAs had good control of molecular weight with narrow molecular weight distribution (MWD). The 1H NMR and MALDI‐TOF MS analysis confirmed quantitative functionalization of chain‐ends. Block copolymerization of ethylene oxide was carried out using the terminal hydroxyl group of PMMA as initiator in the presence of potassium counter ion in THF at 35 °C. The PMMA‐b‐PEO diblock copolymers had moderate control of molecular weight with narrow MWD. The 1H NMR results confirm the absence of trans‐esterification reaction of propagating PEO anions onto the ester pendants of PMMA. The micellation behavior of PMMA‐b‐PEO diblock copolymer was examined in water using 1H NMR and dynamic light scattering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2132–2144, 2008  相似文献   

8.
A new facile method for preparation of an amphiphilic block copolymer via a one‐pot sequential atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) on solid support was developed. As a model homopolymerization for the solid‐supported block copolymerization, ATRPs of MMA and HEMA in toluene and in 2‐butanone/1‐propanol solvent system were carried out, respectively. Crosslinked polystyrene beads bearing 2‐bromoisobutyrate moieties successfully initiated the polymerizations of MMA and HEMA in controlled manner. On the basis of the successful results, the one‐pot synthesis of amphiphilic block copolymer by changing the reaction medium was performed. After the ATRP of MMA in toluene at 90 °C for 1 h, the poly(MMA) formed on the beads were washed by continuous flow of 2‐butanone/1‐propanol under nitrogen with the aid of a glass filter in a U‐shaped glass vessel. Then, 2‐butanone/1‐propanol, copper chloride (I), 2,2′‐bipyridyl, and HEMA were added and heated at 50 °C for 48 h with shaking the vessel, followed by treatment with trifluoroacetic acid to isolate the well‐defined amphiphilic block copolymer, poly(MMA‐b‐HEMA). These demonstrated the feasibility of the present strategy for well‐defined synthesis of amphiphilic block copolymers via a one‐pot procedure. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1990–1997, 2008  相似文献   

9.
A novel, near‐monodisperse, well‐defined ABA triblock copolymer, poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(propylene oxide)‐b‐poly[2‐(dimethylamino)ethyl methacrylate], was synthesized via oxyanion‐initiated polymerization. The initiator was a telechelic‐type potassium alcoholate prepared from poly(propylene glycol) and KH in dry tetrahydrofuran. The copolymers produced were characterized by Fourier transform infrared, 1H NMR, and gel permeation chromatography (GPC). GPC and 1H NMR analyses showed that the products obtained were the desired copolymers, with narrow molecular weight distributions (ca. 1.09–1.11) very close to that of the original poly(propylene glycol). 1H NMR, surface tension measurements, and dynamic light scattering all indicated that the triblock copolymer led to interesting aqueous solution behaviors, including temperature‐induced micellization and very high surface activity. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 624–631, 2002; DOI 10.1002/pola.10144  相似文献   

10.
Novel multigraft copolymers of poly(methyl methacrylate‐graft‐polystyrene) (PMMA‐g‐PS) in which the number of graft PS side chains was varied were prepared by a subsequent two‐step living radical copolymerization approach. A polymerizable 4‐vinylbezenyl 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) monomer (STEMPO), which functioned as both a monomer and a radical trapper, was placed in a low‐temperature atom transfer radical polymerization (60°C) process of methyl methacrylate with ethyl 2‐bromopronionate (EPNBr) as an initiator to gain ethyl pronionate‐capped prepolymers with TEMPO moieties, PMMA‐STEMPOs. The number of TEMPO moieties grafted on the PMMA backbone could be designed by varying STEMPO/EPNBr, for example, the ratios of 1/2, 2/3, or 3/4 gained one, two, or three graft TEMPO moieties, respectively. The resulting prepolymers either as a macromolecular initiator or a trapper copolymerized with styrene in the control of stable free‐radical polymerization at an elevated temperature (120 °C), producing the corresponding multigraft copolymers, PMMA‐g‐PSs. The nitroxyl‐functionalized PMMA prepolymers produced a relatively high initiation efficiency (>0.8) as a result of the stereohindrance and slow diffusion of TEMPO moieties connected on the long PMMA backbone. The polymerization kinetics in two processes showed a living radical polymerization characteristic. The molecular structures of these prepolymers and graft copolymers were well characterized by combining Fourier transform infrared spectroscopy, gel permeation chromatography, chemical element analysis, and 1H NMR. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1876–1884, 2002  相似文献   

11.
Anionic polymerization of 2-(tert-butylamino)ethyl methacrylate (tBAEMA), which bears an unprotected secondary amine moiety, has been investigated in THF at −78°C. The presence of lithium chloride has been shown to be desirable to afford narrow molecular weight distribution as well as a good agreement between theoretical and observed molecular weight. The living character of the polymerization has also been demonstrated, and the synthesis of block copolymers carried out successfully. They have been analyzed by SEC by adding a mixture of secondary and tertiary amines to the eluent (THF) so as to avoid any polymer adsorption during elution. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2035–2040, 1997  相似文献   

12.
Anionic polymerization of N‐methoxymethyl‐N‐isopropylacrylamide ( 1 ) was carried out with 1,1‐diphenyl‐3‐methylpentyllithium and diphenylmethyllithium, ‐potassium, and ‐cesium in THF at ?78 °C for 2 h in the presence of Et2Zn. The poly( 1 )s were quantitatively obtained and possessed the predicted molecular weights based on the feed molar ratios between monomer to initiators and narrow molecular weight distributions (Mw/Mn = 1.1). The living character of propagating carbanion of poly( 1 ) either at 0 or ?78 °C was confirmed by the quantitative efficiency of the sequential block copolymerization using N,N‐diethylacrylamide as a second monomer. The methoxymethyl group of the resulting poly( 1 ) was completely removed to give a well‐defined poly(N‐isopropylacrylamide), poly(NIPAM), via the acidic hydrolysis. The racemo diad contents in the poly(NIPAM)s could be widely changed from 15 to 83% by choosing the initiator systems for 1 . The poly(NIPAM)s obtained with Li+/Et2Zn initiator system possessed syndiotactic‐rich configurations (r = 75–83%), while either atactic (r = 50%) or isotactic poly(NIPAM) (r = 15–22%) was generated with K+/Et2Zn or Li+/LiCl initiator system, respectively. Atactic and syndiotactic poly(NIPAM)s (42 < r < 83%) were water‐soluble, whereas isotactic‐rich one (r < 31%) was insoluble in water. The cloud points of the aqueous solution of poly(NIPAM)s increased from 32 to 37 °C with the r‐contents. These indicated the significant effect of stereoregularity of the poly(NIPAM) on the water‐solubility and the cloud point in water © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4832–4845, 2006  相似文献   

13.
The interaction of concentrated polymer brushes with proteins was chromatographically investigated. By the use of surface‐initiated atom transfer radical polymerization, a low‐polydispersity poly(2‐hydroxyethyl methacrylate) (PHEMA) was densely grafted onto the inner surfaces of silica monoliths with mesopores of about 50 and 80 nm in mean size. The graft density reached 0.4–0.5 chains/nm2. The 80‐nm‐mesopore monolithic column with the concentrated PHEMA brush was characterized through the elution of low‐polydispersity pullulans with different molecular weights, clearly showing two modes of size exclusion, that is, one by the mesopores and the other by the brush phase. The latter mode gave a sharp separation with a critical molecular weight (size‐exclusion limit) of about 1000. This molecular size of pullulan was comparable to the distance between the nearest‐neighbor graft points. The elution behaviors of five proteins of different sizes (bovine serum thyroglobulin, bovine serum immunoglobulin G, bovine serum albumin, horse heart myoglobin, and bovine serum aprotinin) were studied with this PHEMA‐grafted column. The smallest protein, aprotinin, with a pullulan‐reduced molecular weight slightly larger than the critical value of 1000, was eluted much behind the corresponding pullulan, and this indicated that it barely got into the brush layer, suffering from a strong affinity interaction within the brush. On the other hand, the other four larger proteins were eluted at the same elution volumes as the equivalent pullulans, and this meant that they were perfectly excluded from the brush layer and separated only in the size‐exclusion mode by the mesopores without an affinity interaction with the brush surface. This excellent inertness of the concentrated brush in the interaction with the large proteins should afford the system long‐term stability against biofouling. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4795–4803, 2007  相似文献   

14.
Living anionic polymerization of an acetal protected 4‐hydroxystyrene monomer, (4‐(2‐tetrahydropyranyloxy)styrene) (OTHPSt), and the chain extension of the poly(OTHPSt) anion with a variety of monomers including styrene, 4‐tert‐butylstyrene, methacryloyl polyhedral oligomeric silsesquioxane (MAPOSS) and hexamethylcyclotrisiloxane is demonstrated. The P(OTHPSt) homopolymer has a glass transition temperature well above room temperature, which facilitates handling and purification of the protected poly(4‐hydroxystyrene) (PHS). The resulting diblock copolymers have narrow dispersities <1.05. Chemoselective mild deprotection conditions for the P(OTHPSt) block were identified to prevent simultaneous degradation of the MAPOSS or dimethylsiloxane (DMS) block, thus allowing for the first reported synthesis of P(HS‐b‐DMS) and P(HS‐b‐MAPOSS). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1458–1468  相似文献   

15.
The effect of the presence of different amounts of block copolymers [polystyrene-block-poly(methyl methacrylate)] on the morphology of polystyrene/poly (methyl methacrylate) composite latex particles was investigated. The block copolymers were produced in situ by controlled radical polymerization (CRP) through the addition of the second monomer to a seed prepared by miniemulsion polymerization with a certain amount of a CRP agent. With an increase in the amounts of the block copolymers, the particle morphology changed from a hemisphere morphology (for a latex without block copolymers, i.e., without the use of a CRP agent during the polymerization) to clear core–shell morphologies as a result of decreasing polymer–polymer interfacial tension © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2484–2493, 2007  相似文献   

16.
End‐capping reactions of a living polyester, obtained by anionic polymerization of ethylphenylketene (EPK), were carried out. As end‐capping reagents, electrophiles such as alkyl halide and acyl halide were successfully used. Reactivity of the terminal enolate and the resulting terminal structures were elucidated by model reactions, using lithium enolates having low molecular weights, obtained by an equimolar reaction of EPK with butyllithium. Polymerization of EPK by lithium alkoxide and the subsequent end‐capping reaction afforded the corresponding polyester having functional groups at both chain ends and a narrow molecular weight distribution. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3103–3111, 2002  相似文献   

17.
A successive method for preparing novel amphiphilic graft copolymers with a hydrophilic backbone and hydrophobic side chains was developed. An anionic copolymerization of two bifunctional monomers, namely, allyl methacrylate (AMA) and a small amount of glycidyl methacrylate (GMA), was carried out in tetrahydrofuran (THF) with 1,1‐diphenylhexyllithium (DPHL) as the initiator in the presence of LiCl ([LiCl]/[DPHL]0 = 2), at −50 °C. The copolymer poly(AMA‐co‐GMA) thus obtained possessed a controlled molecular weight and a narrow molecular weight distribution (Mw /Mn = 1.08–1.17). Without termination and polymer separation, a coupling reaction between the epoxy groups of this copolymer and anionic living polystyrene [poly(St)] at −40 °C generated a graft copolymer with a poly(AMA‐co‐GMA) backbone and poly(St) side chains. This graft copolymer was free of its precursors, and its molecular weight as well as its composition could be well controlled. To the completed coupling reaction solution, a THF solution of 9‐borabicyclo[3.3.1]nonane was added, and this was followed by the addition of sodium hydroxide and hydrogen peroxide. This hydroboration changed the AMA units of the backbone to 3‐hydroxypropyl methacrylate, and an amphiphilic graft copolymer with a hydrophilic poly(3‐hydroxypropyl methacrylate) backbone and hydrophobic poly(St) side chains was obtained. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1195–1202, 2000  相似文献   

18.
Three alternative routes, using the heterobifunctional macroinitiator technique, have been developed to obtain polystyrene–poly(tert‐butyl methacrylate)–poly(ethylene oxide) triarm star block copolymers. Only the route showing the reverse initiation of tert‐butyl methacrylate on potassium alkoxide leads to the pure star, whereas the other strategies lead to incomplete initiation because of either an increase in the side reactions, such as transesterification, or a decrease in the accessibility toward bulky catalysts. These limits are linked to the particular location of the initiating group at the junction of the two blocks of the copolymer precursor. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1745–1751, 2004  相似文献   

19.
ABA block copolymers of methyl methacrylate and methylphenylsilane were synthesized with a methodology based on atom transfer radical polymerization (ATRP). The reaction of samples of α,ω‐dihalopoly(methylphenylsilane) with 2‐hydroxyethyl‐2‐methyl‐2‐bromoproprionate gave suitable macroinitiators for the ATRP of methyl methacrylate. The latter procedure was carried out at 95 °C in a xylene solution with CuBr and 2,2‐bipyridine as the initiating system. The rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography, and differential scanning calorimetry was used to obtain preliminary evidence of phase separation in the copolymer products. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 30–40, 2003  相似文献   

20.
The block copolymer poly(ethylene oxide)‐b‐poly(4‐vinylpyridine) was synthesized by a combination of living anionic ring‐opening polymerization and a controllable radical mechanism. The poly(ethylene oxide) prepolymer with the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy end group (PEOT) was first obtained by anionic ring‐opening polymerization of ethylene oxide with sodium 4‐oxy‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy as the initiator in a homogeneous process. In the polymerization UV and electron spin resonance spectroscopy determined the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy moiety was left intact. The copolymers were then obtained by radical polymerization of 4‐vinylpyridine in the presence of PEOT. The polymerization showed a controllable radical mechanism. The desired block copolymers were characterized by gel permeation chromatography, Fourier transform infrared, and NMR spectroscopy in detail. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4404–4409, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号