首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epoxy resins (DGEBA) were cured by cationic latent thermal catalysts, that is, N‐benzylpyrazinium hexafluoroantimonate (BPH) and N‐benzylquinoxalinium hexafluoroantimonate (BQH) to investigate the effect of substituted benzene group on cure kinetics and mechanical properties of epoxy system. Differential scanning calorimetry (DSC) was undertaken for activation energy of the system. It was also characterized in terms of flexural, fracture toughness, and Izod impact strengths for the mechanical tests. As a result, the cure reaction of both epoxy systems resulted in an autocatalytic kinetic mechanism accelerated by hydroxyl groups. Also, the conversion and cure activation energy of the DGEBA/BQH system were higher than those of DGEBA/BPH system. The mechanical properties of the DGEBA/BQH system were also superior to those of the DGEBA/BPH system, as well as the morphology. This was probably due to the consequence of the effect of the substituted benzene group of the BQH catalyst, resulting in increasing the crosslinking density and structural stability in the epoxy system studied. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2419–2429, 2004  相似文献   

2.
To investigate the effect of catalysts on the thermal, rheological, and mechanical properties of an epoxy system, a resin based on diglycidyl ether of bisphenol‐A (DGEBA) was cured by two cationic latent thermal catalysts, N‐benzylpyrazinium hexafluoroantimonate (BPH) and N‐benzylquinoxalinium hexafluoroantimonate (BQH). Differential scanning calorimetry was used for the thermal characterization of the epoxy systems. Near‐infrared spectroscopy was employed to examine the cure reaction between the DGEBA and the latent thermal catalysts used. The rheological properties of the blend systems were investigated under an isothermal condition with a rheometer. To characterize the mechanical properties of the systems, flexure, fracture toughness (KIC), and impact tests were performed. The phase morphology was studied with scanning electron microscopy of the fractured surfaces of mechanical test samples. The conversion and cure activation energy of the DGEBA/BQH system were higher than those of the DGEBA/BPH system. The crosslinking activation energy showed a result similar to that obtained from the cure kinetics of the blend systems. The flexure strength, KIC, and impact properties of the DGEBA/BQH system were also superior to those of the DGEBA/BPH system. This was a result of the substituted benzene group of the BQH catalyst, which increased the crosslink density and structural stability of the epoxy system studied. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 187–195, 2001  相似文献   

3.
Terephthaloyl chloride was reacted with 4‐hydroxy benzoic acid to get terephthaloylbis(4‐oxybenzoic) acid, which was characterized and further reacted with epoxy resin [diglycidyl ether of bisphenol A (DGEBA)] to get a liquid‐crystalline epoxy resin (LCEP). This LCEP was characterized by Fourier transform infrared spectrometry, 1H and 13C NMR spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). LCEP was then blended in various compositions with DGEBA and cured with a room temperature curing hardener. The cured blends were characterized by DSC and dynamic mechanical analysis (DMA) for their thermal and viscoelastic properties. The cured blends exhibited higher storage moduli and lower glass‐transition temperatures (tan δmax, from DMA) as compared with that of the pure DGEBA network. The formation of a smectic liquid‐crystalline phase was observed by POM during the curing of LCEP and DGEBA/LCEP blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3375–3383, 2003  相似文献   

4.
The latent properties and cure behaviors of an epoxy blend system based on cycloaliphatic epoxy (CAE) and diglycidyl ether of bisphenol A (DGEBA) epoxy containing N‐benzylpyrazinium hexafluoroantimonate (BPH) as a thermal latent initiator were investigated with near‐infrared (N‐IR) spectroscopy. The assignments of the latent properties and cure kinetics were performed by the measurements of the N‐IR reflectance for epoxide and hydroxyl functional groups at different temperatures and compositions. As a result, this system showed more than one type of reaction, and BPH was an excellent thermal latent catalyst without any coinitiator. The cure behaviors were identified by the changes in the absorption intensity of the hydroxyl groups at 7100 cm−1 with different composition ratios. Moreover, characteristic N‐IR band assignments were used to evaluate the reactive kinetics and were shown to be an appropriate method for studying the cure behaviors of the CAE/DGEBA blend system containing a thermal latent catalyst. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 326–331, 2001  相似文献   

5.
Nonaqueous synthesis of nanosilica in diglycidyl ether of bisphenol‐A epoxy (DGEBA) resin has been successfully achieved in this study by reacting tetraethoxysilane (TEOS) directly with DGEBA epoxy matrix, at 80 °C for 4 h under the catalysis of boron trifluoride monoethylamine (BF3MEA). BF3MEA was proved to be an effective catalyst for the formation of nanosilica in DGEBA epoxy under thermal heating process. FTIR and 29Si NMR spectra have been used to characterize the structures of nanosilica obtained from this direct thermal synthetic process. The morphology of the nanosilica synthesized in epoxy matrix has also been analyzed by TEM and SEM studies. The effects of both the concentration of BF3MEA catalyst and amount of TEOS on the diameters of nanosilica in the DGEBA epoxy resin have been discussed in this study. From the DSC analysis, it was found that the nanosilica containing epoxy exhibited the same curing profile as pure epoxy resin, during the curing reaction with 4,4′‐diaminodiphenysulfone (DDS). The thermal‐cured epoxy–nanosilica composites from 40% of TEOS exhibited high glass transition temperature of 221 °C, which was almost 50 °C higher than that of pure DGEBA–DDS–BF3MEA‐cured resin network. Almost 60 °C increase in thermal degradation temperature has been observed during the TGA of the DDS‐cured epoxy–nanosilica composites containing 40% of TEOS. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 757–768, 2006  相似文献   

6.
Based on an FT-IR and 13C-NMR spectroscopic study using model compounds, we previously proposed an epoxy-cyanate coreaction path in the molten state, by identifying all chemical species and their role in the reaction mixture. These data were then applied to difunctional systems involving diglycidyl ether of bisphenol A (DGEBA) and bisphenol A dicyanate (BADCy), with mixtures prepared in different epoxy/cyanate ratios. Using FT-IR and solid state 13C-NMR spectroscopic analyses, we show the effect of epoxy group concentration on the final structure of the system. We were able to show that epoxy functions react on the triazine rings formed in the first step of homopolymerization of cyanates, and that the structure of the final system depends on their initial concentration. In addition, a study of difunctional systems for identical cyanate-epoxy stoichiometry was undertaken in the presence of anionic (imidazole) and metallic (AcAcCu and AcAcCr) catalysts in order to determine their effect on the reactivity of the two monomers and on the structure of the final system. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3101–3115, 1997  相似文献   

7.
Cure behaviors of diglycidylether of bisphenol A (DGEBA)/trimethylolpropane triglycidylether (TMP) epoxy blends initiated by 1 wt % N‐benzylpyrazinium hexafluoroantimonate (BPH) as a cationic latent catalyst were investigated using DSC and rheometer. This system showed more than one type of reaction and BPH could be excellent thermal latent catalyst without any co‐initiator. The cure activation energy (Ea) obtained from Kissinger method using dynamic DSC data was higher in DGEBA/TMP mixtures than in pure DGEBA. Rheological properties of the blend system were investigated under isothermal condition using a rheometer. The gel time was obtained from the analysis of storage modulus (G′), loss modulus (G″) and damping factor (tanδ). The crosslinking activation energy (Ec) was also determined from the Arrhenius equation based on the gel time and curing temperature. As a result, the crosslinking activation energy showed a similar behavior with that obtained from Kissinger method. And the gel time decreased with increasing TMP content, which could be resulted from increasing the activated sites by trifunctional epoxide groups and decreasing the viscosity of DGEBA/TMP epoxy blend in the presence of TMP. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2114–2123, 2000  相似文献   

8.
We synthesized a novel epoxy (dopotep) and cyanate ester (dopotcy) based on a phosphorus‐containing triphenol (dopotriol). The proposed structures were confirmed by IR, mass spectra, NMR spectra, and epoxy‐equivalent‐weight titration. The synthesized dopotep or dopotcy was copolymerized with diglycidyl ether of bisphenol A (DGEBA), 6′,6‐bis(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazineyl)methane (F‐a), or dicyanate ester of bisphenol A (BADCY). Thus, copolymers based on DGEBA/dopotep/diphenylmethane (ddm), F‐a/dopotep, BADCY/dopotcy, and DGEBA/dopotcy were developed. The thermal properties, dielectric properties, and flame retardancy of these copolymers were investigated. The curing kinetics of dopotep/ddm and dopotep/diamino diphenylsulfone were studied with differential scanning calorimetry. The microstructure of DGEBA/dopotcy was studied with IR. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3487–3502, 2006  相似文献   

9.
The investigation of the cure kinetics of a diglycidyl ether of bisphenol A (DGEBA)/phenol‐novolac blend system with different phenolic contents initiated by a cationic latent thermal catalyst [N‐benzylpyrazinium hexafluoroantimonate (BPH)] was performed by means of the analysis of isothermal experiments using a differential scanning calorimetry (DSC). Latent properties were investigated by measuring the conversion as a function of curing temperature using a dynamic DSC method. The results indicated that the BPH in this system for cure is a significant thermal latent initiator and has good latent thermal properties. The cure reaction of the blend system using BPH as a curing agent was strongly dependent on the cure temperature and proceeded through an autocatalytic kinetic mechanism that was accelerated by the hydroxyl group produced through the reaction between DGEBA and BPH. At a specific conversion region, once vitrification took place, the cure reaction of the epoxy/phenol‐novolac/BPH blend system was controlled by a diffusion‐control cure reaction rather than by an autocatalytic reaction. The kinetic constants k1 and k2 and the cure activation energies E1 and E2 obtained by the Arrhenius temperature dependence equation of the epoxy/phenol‐novolac/BPH blend system were mainly discussed as increasing the content of the phenol‐novolac resin to the epoxy neat resin. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2945–2956, 2000  相似文献   

10.
A novel epoxy system was developed through the in situ curing of bisphenol A type epoxy and 4,4′‐diaminodiphenylmethane with the sol–gel reaction of a phosphorus‐containing trimethoxysilane (DOPO–GPTMS), which was prepared from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) with 3‐glycidoxypropyltrimethoxysilane (GPTMS). The preparation of DOPO–GPTMS was confirmed with Fourier transform infrared, 1H and 31P NMR, and elemental analysis. The resulting organic–inorganic hybrid epoxy resins exhibited a high glass‐transition temperature (167 °C), good thermal stability over 320 °C, and a high limited oxygen index of 28.5. The synergism of phosphorus and silicon on flame retardance was observed. Moreover, the kinetics of the thermal oxidative degradation of the hybrid epoxy resins were studied. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2354–2367, 2003  相似文献   

11.
The photocuring process of the diglycidyl ether of bisphenol A (DGEBA) with the bislactone 1,6‐dioxaspiro[4,4]nonane‐2,7‐dione (s(γ‐BL)) was studied. Triarylsulfonium hexafluoroantimonate was employed as photoinitiator. FTIR/ATR was used to study the evolution of epoxy, lactone, and intermediate spiroorthoester groups to identify the different reactions that take place during the photocuring process. Photo‐DSC and DSC were used to study the thermal evolution of the photocuring process and to assess the Tg of the fully cured material. Thermogravimetric analysis (TGA) was used to determine the thermal stability of the fully cured material. The thermomechanical properties of the materials were investigated using dynamic mechanical‐thermal analysis. Shrinkage undergone during photocuring and gelation was studied with TMA. A strong influence of the photocuring temperature on the photocuring process of the DGEBA‐ s(γ‐BL) system was observed. Differences in the reactivity of the different species were observed with respect to the thermally cured system using ytterbium triflate as cationic thermal initiator. As a consequence, photocured materials exhibited a superior thermal stability and lower flexibility. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5446–5458, 2007  相似文献   

12.
The phase behavior of uncured and cured mixtures containing stoichiometric amounts of Epon164 novolac epoxy resin and 4,4′‐methylenedianiline combined with a nearly symmetric poly(methyl acrylate‐co‐glycidyl methacrylate‐b‐polyisoprene) diblock copolymer was investigated with small‐angle X‐ray scattering and transmission electron microscopy. A series of morphologies were documented as a function of the copolymer concentration, which ranged from pure diblock to 2.5 wt % in the thermoset resin. Ordered lamellae bordered a wide multiphase region followed by disordered wormlike micelles that transformed continuously into vesicles at the lowest compositions. The thermal curing of this pentafunctional epoxy system to complete conversion had little impact on the phase behavior of the mixtures, and this was consistent with previous experiments with difunctional epoxy and the same hardening agent. However, changing the epoxy component led to gross changes in the phase behavior that were interpreted with the concept of a wet‐to‐dry brush transition. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1994–2003, 2003  相似文献   

13.
The luminescent complex [4‐(3‐hydroxypropyl)‐4′‐methyl‐2,2′‐bipyridine]‐bis(2,2′‐bipyridine)‐ruthenium(II)‐bis(hexafluoroantimonate) and its methacrylate derivative were successfully synthesized and fully characterized by two‐dimensional 1H and 13C{1H} NMR techniques [correlation spectroscopy (COSY) and heteronuclear multiple‐quantum coherence experiment (HMQC)], as well as matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry. The respective labeled methyl methacrylate‐ruthenium(polypyridyl) copolymers were obtained by free‐radical copolymerization with methyl methacrylate and were characterized utilizing NMR, IR, and UV–visible spectroscopy and gel permeation chromatography. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3954–3964, 2003  相似文献   

14.
Diglycidyl ether of bisphenol A (DGEBA)‐bridged polyorganosiloxane precursors have been prepared successfully by reacting diglycidyl ether of bisphenol A epoxy resin with 3‐aminopropyltriethoxysilane. Acid‐modified and unmodified multiwalled carbon nanotube (MWCNT) were dispersed in the diglycidyl ether of bisphenol A‐bridged polyorganosiloxane precursors and cured to prepare the carbon nanotube/diglycidyl ether of bisphenol A‐bridged polysilsesquioxane (MWCNT/DGEBA‐PSSQ) composites. The molecular motion of MWCNT/DGEBA‐PSSQ nanocomposites was studied by high‐resolution solid‐state 13C NMR. Acid‐modification can improve the affinity between MWCNT and the polymer matrix. The molecular motion of the DGEBA‐PSSQ decreased with acid‐modified MWCNT content. However, when unmodified MWCNT was used, the molecular motion of the DGEBA‐PSSQ was increased. SEM and TEM microphotographs confirm that acid‐modified MWCNT exhibits better dispersion than unmodified MWCNT in DGBEA‐PSSQ. The dynamic mechanical properties of acid‐modified MWCNT/DGBEA‐PSSQ composites are more favorable than those of unmodified MWCNT. Tg of the DGEBA‐PSSQ decreased from 174.0 °C (neat DGEBA‐PSSQ) to 159.0 °C (1 wt % unmodified MWCNT) and 156.0 °C (1 wt % acid‐modified MWCNT). The storage modulus (at 30 °C) of the DGEBA‐PSSQ increased from 1.23 × 109 Pa (neat DGEBA‐PSSQ) to 1.65 × 109 Pa (1 wt % acid‐modified MWCNT). However, when unmodified MWCNT was used, the storage modulus of the DGEBA‐PSSQ decreased to 6.88 × 108 Pa (1 wt % unmodified MWCNT). At high temperature, above 150 °C, storage modulus of nanocomposites was higher than that of neat polymer system. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 472–482, 2008  相似文献   

15.
Tryptophan, an amino acid, has been used as a novel, environmentally friendly curing agent instead of toxic curing agents to crosslink the diglycidyl ether of bisphenol A (DGEBA) epoxy resin. The curing reaction of tryptophan/DGEBA mixtures of different ratios and the effect of the imidazole catalyst on the reaction have been evaluated. The optimum reaction ratio of DGEBA to tryptophan has been determined to be 3:1 with 1 wt % catalyst, and the curing mechanism of the novel reaction system has been studied and elucidated. In situ Fourier transform infrared spectra indicate that with the extraction of a hydrogen from NH3+ in zwitterions from tryptophan, the formed nucleophilic primary amine and carboxylate anions of the tryptophan can readily participate in the ring‐opening reaction with epoxy. The secondary amine, formed from the primary amine, can further participate in the ring‐opening reaction with epoxy and form the crosslinked network. The crosslinked structure exhibits a reasonably high glass‐transition temperature and thermal stability. A catalyst‐initiated chain reaction mechanism is proposed for the curing reaction of the epoxy with zwitterion amino acid hardeners. The replacement of toxic curing agents with this novel, environmentally friendly curing agent is an important step toward a next‐generation green electronics industry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 181–190, 2007  相似文献   

16.
The unique polymeric silsesquioxane/4,4′-diglycidyether bisphenol A (DGEBA) epoxy nanocomposites have been prepared by sol-gel method. The structure of nanocomposites was characterized by attenuated total reflectance (ATR) and solid state 29Si NMR. The characteristic intensity of trisubstituted (T) structure was higher than that of tetrasubstituted (Q) structure from solid state 29Si NMR spectra of 3-isocyanatopropyltriethoxysilane (IPTS) modified epoxy. The activation energies of curing reaction of epoxy system and IPTS modified epoxy system are 28-66 kJ/mol and 57-75 kJ/mol, respectively, by Ozawa’s and Kissinger’s methods. The triethyoxysilane side chain of IPTS modified epoxy might interfere the curing reaction of epoxy/amine and increase the activation energy of curing. The thermal degradation of nanocomposites was investigated by Thermogravimetric analysis (TGA). The char yield of nanocomposites was proportional to the 2-(diphenylphosphino)ethyltriethoxysilane (DPPETES) moiety content at high temperature. A higher char content could inhibit thermal decomposition dramatically and enhance the thermal stability. Moreover, the nanocomposites possess high optical transparency.  相似文献   

17.
The addition reaction of 2,2‐bis‐[4‐(2,3‐epoxypropoxy)‐phenyl]‐propane (DGEBA) and preformed complexes of metal ions and disecondary diamines led to a large quantity of cyclic epoxide–amine oligomers. As shown by gel permeation chromatographic analysis, cycles of n = 1, 2, and 3 were formed. Functional epoxide end groups of the prepared oligomers were completely missing in the IR and 1H NMR and 13C NMR spectra. In the fast atom bombardment and matrix‐assisted laser desorption/ionization mass spectra, the molecular ions of the n = 1, 2, 3 cycles of DGEBA and N,N′‐dibenzyl‐5‐oxanonanediamine‐1,9 were detected at m/z = 680, 1361, and 2042. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2047–2052, 2003  相似文献   

18.
This article presents a new type of epoxy‐toughening system, in which high‐Tg polyaryletherketone (PEK‐L) containing one carboxyl group per repeating unit was utilized to randomly copolymerize with epoxy resin (DGEBA) to form crosslinking network. Compared to the neat epoxy resin, the PEK‐L/DGEBA copolymers showed simultaneous enhancement in flexural strains at break by 282%, GIC value by 193%, and flexural strength by 14%. The reason was attributed to the uniform three‐dimensional copolymer network interweaved by PEK‐L and DGEBA segments through strong covalent bonds. The copolymerization process were monitored and examined by FTIR spectra. The effect of copolymer composition on the thermal and mechanical properties as well as toughening mechanism were also investigated and discussed in detail. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

19.
We synthesized a novel phosphorus‐containing triamine [9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐yl‐tris(4‐aminophenyl) methane (dopo‐ta)] from the nucleophilic addition of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide and pararosaniline chloride, using triethylamine as an acid receiver. We confirmed the structure of dopo‐ta by IR, mass, and NMR spectra and elemental analysis. dopo‐ta served as a curing agent for diglycidyl ether of bisphenol A (DGEBA) and dicyclopentadiene epoxy (hp7200). Properties such as the glass‐transition temperature (Tg), thermal decomposition temperature, flame retardancy, moisture absorption, and dielectric properties of the cured epoxy resins were evaluated. The Tg's of cured DGEBA/dopo‐ta and hp7200/dopo‐ta were 171 and 190 °C, respectively. This high Tg phenomenon is rarely seen in the literature after the introduction of a flame‐retardant element. The flame retardancy increased with the phosphorus content, and a UL‐94 V‐0 grade was achieved with a phosphorus content of 1.80 wt % for DGEBA/dopo‐ta/diamino diphenylmethane (DDM) systems and 1.46 wt % for hp7200/dopo‐ta/DDM systems. The dielectric constants for DGEBA/dopo‐ta and hp7200/dopo‐ta were 2.91 and 2.82, respectively, implying that the dopo‐ta curing systems exhibited low dielectric properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5971–5986, 2005  相似文献   

20.
A series of difunctional silicon‐containing monomers were prepared with a novel method consisting of the monohydrosilation of an α,ω‐difunctional Si? H‐terminated siloxane with a vinyl‐functional epoxide or oxetane followed by the dehydrodimerization of the resulting Si? H‐functional intermediate. This method used simple, readily available starting materials and could be conducted as a streamlined one‐pot, two‐step synthesis. This novel method was also applied to the synthesis of several epoxy–silicone oligomers. The reactivities of these new monomers and oligomers were examined with Fourier transform real‐time infrared spectroscopy and optical pyrometry. Those monomers containing epoxycyclohexyl groups displayed excellent reactivity in cationic ring‐opening polymerization in the presence of lipophilic onium salt photoinitiators. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3056–3073, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号