首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(propylene carbonate) (PPC) is a new biodegradable aliphatic polycarbonate. However, the poor thermal stability and low glass transition temperatures (Tg) have limited its applications. To improve the thermal properties of PPC, organophilic montmorillonite (OMMT) was mixed with PPC by a solution intercalation method to produce nanocomposites. An intercalated-and-flocculated structure of PPC/OMMT nanocomposites was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal and mechanical properties of PPC/OMMT nanocomposites were investigated by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), and electronic tensile tester. Due to the nanometer-sized dispersion of layered silicate in polymer matrix, PPC/OMMT nanocomposites exhibit improved thermal and mechanical properties than pure PPC. When the OMMT content is 4 wt%, the PPC/OMMT nanocomposite shows the best thermal and mechanical properties. These results indicate that nanocomposition is an efficient and convenient method to improve the properties of PPC.  相似文献   

2.
A series of poly(propylene) silica‐grafted‐hyperbranched polyester nanocomposites by grafting the modified hyperbranched polyester (Boltorn? H20), possessing theoretically 50% end carboxylic groups and 50% end hydroxyl groups, which endcapped with octadecyl isocyanate (C19), onto the surface of SiO2 particles (30 nm) through 3‐glycidoxy‐propyltrimethoxysilane (GPTS) was prepared. The effect of silica‐grafted‐modified Boltorn? H20 on the mechanical properties of polypropylene (PP) was investigated by tensile and impact tests. The morphological structure of impact fracture surface and thermal behavior of the composites were determined by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), respectively. The melt viscosity of composites was investigated by melt flow index (MFI). The obtained results showed that: (1) the modified Boltorn? H20 was successfully grafted onto the SiO2 surface confirmed by FT‐IR and X‐ray photoelectron spectroscopy (XPS) analysis; (2) the incorporation of silica‐grafted‐modified Boltorn? H20 (3–5 wt% SiO2) greatly enhanced the notched impact strength as well the tensile strength of the composites; (3) the incorporation of silica‐grafted‐modified Boltorn? H20 had no influence on the melting temperature and crystallinity of PP phase; (4) the MFI of PP composites increased when the silica‐grafted‐modified Boltorn? H20 particles were added compared with PP/SiO2 or PP/SiO2‐GPTS composites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
For the improved dispersion of montmorillonite (MMT) in a polypropylene (PP) matrix, PP/MMT nanocomposites prepared via direct melt intercalation were further subjected to oscillating stress achieved by dynamic packing injection molding. The shear‐induced morphological changes were investigated with an Instron machine, wide‐angle X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The original nanocomposites possessed a partly intercalated and partly exfoliated morphology. A transformation of the intercalated structure into an exfoliated structure occurred after shearing, and a more homogeneous dispersion of MMT in the PP matrix was obtained. However, the increase of the exfoliated structure was accompanied by the scarifying of the orientation of MMT layers along the shear direction. Some bended or curved MMT layers were found for the first time by TEM after shearing. However, the orientation of PP chains in the PP/MMT nanocomposites became very difficult under an external shear force; this indicated that the molecular motion of PP chains intercalated between MMT layers was highly confined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1–10, 2003  相似文献   

4.
This study investigates the influence of nylon‐6 (PA‐6) and ethylene‐vinyl acetate copolymer (EVA) alloy/clay nanocomposites on the properties of the flame‐retardant (FR) poly(propylene). Cone calorimetry and scanning electron microscopy (SEM) techniques were used to investigate the effect of PA‐6 and EVA alloy nanocomposites on the fire properties and dispersion of intumescent flame‐retardants (IFRs). The experimental results show that PA‐6 and EVA alloy nanocomposites improve the fire and mechanical properties of the FR poly(propylene). It is also shown that the improvement of the properties mainly depends on the weight ratio of PA‐6 and EVA in the alloys. The probable mechanisms are discussed in this paper. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Summary: Poly(propylene)/monoalkylimidazolium‐modified montmorillonite (PP/IMMT) nanocomposites were prepared by in situ intercalative polymerization of propylene with TiCl4/MgCl2/MMT catalyst. The PP synthesized possessed high isotacticity and molecular weight. Both wide‐angle X‐ray diffraction (XRD) and transmission electron microscopy (TEM) examinations evidenced the nanocomposite formation with exfoliated MMT homogeneously distributed in the PP matrix. A thermal stability study revealed that the nanocomposites possess good thermal stability.

X‐ray diffraction patterns of PP/IMMT (MMT = 2.2 wt.‐%) nanocomposite before and after processing.  相似文献   


6.
7.
The effects of clay on polymorphism of polypropylene (PP) in PP/clay nanocomposites (PPCNs) under various thermomechanical conditions were studied. In extruded PP and PPCN pellet samples, only α-phase crystallites existed, as they were prepared by rapidly cooling the melt extrudates to room temperature. Under compression, β-phase crystallites can develop in neat PP under various thermal conditions, of which isothermal crystallizing at 120 °C gave the highest content of β-phase crystallites. In contrast, no β-phase crystallite was detected in the PPCN samples prepared under the same conditions. This indicated that clay significantly inhibits the formation of β-phase crystallites. The likely reason is that the presence of clay in PPCNs greatly sped up the crystallization process of the α phase, whereas it had an insignificant effect on the crystallization rates of the β phase. The results also showed that clay may slightly promote the formation of γ-phase PP crystallites in PPCNs. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1810–1816, 2004  相似文献   

8.
The nonisothermal crystallization kinetics of poly(propylene) (PP) and poly(propylene)/organic‐montmorillonite (PP/Mont) nanocomposite were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by previous research was used to describe the nonisothermal crystallization process of PP and PP/Mont nanocomposite very well. The values of half‐time and Zc showed that the crystallization rate increased with increasing cooling rates for both PP and PP/Mont nanocomposite, but the crystallization rate of PP/Mont nanocomposite was faster than that of PP at a given cooling rate. The activation energies were estimated by the Kissinger method, and the values were 189.4 and 155.7 kJ/mol for PP and PP/Mont nanocomposite, respectively. PP/Mont nanocomposite could be easily fabricated as original PP, although the addition of organomontmorillonite might accelerate the overall nonisothermal crystallization process. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 408–414, 2002; DOI 10.1002/polb.10101  相似文献   

9.
The synthesis of MMT and poly(o-anisidine) (MMT/POA) clay nanocomposites was carried out by using the chemical oxidative polymerization of POA and MMT clay with POA, respectively. By maintaining the constant concentration of POA, different percentage loads of MMT clay were used to determine the effect of MMT clay on the properties of POA. The interaction between POA and MMT clay was investigated by FTIR spectroscopy, and, to reveal the complete compactness and homogeneous distribution of MMT clay in POA, were assessed by using scanning-electron-microscope (SEM) analysis. The UV–visible spectrum was studied for the optical and absorbance properties of MMT/POA ceramic nanocomposites. Furthermore, the horizontal burning test (HBT) demonstrated that clay nanofillers inhibit POA combustion.  相似文献   

10.
The preparation and properties of poly(vinylidene fluoride) (PVDF)/clay nanocomposites are reported for the first time. PVDF/clay nanocomposites were prepared by melt intercalation with organophilic clay. The composites were characterized with X‐ray diffraction, differential scanning calorimetry, and dynamic mechanical analysis. X‐ray diffraction results indicated intercalation of the polymer into the interlayer spacing. PVDF in the nanocomposites crystallized in the β form. Differential scanning calorimetry nonisothermal curves showed an increase in the melting and crystallization temperatures along with a decrease in crystallinity, as evidenced by the melting and crystallization peaks. Isothermal crystallization studies showed an enhanced rate of crystallization with the addition of clay, as evidenced by a reduction in the crystallization time. Dynamic mechanical analysis indicated significant improvements in the storage modulus over a temperature range of ?100 to 150 °C. The tan δ peak signifying the glass‐transition temperature of PVDF shifted to higher temperatures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1682–1689, 2002  相似文献   

11.
The thermal degradation kinetics of polypropylene/clay microcomposites and nanocomposites were studied by thermogravimetric analysis. In comparison with pure polypropylene, the reaction order of the degradation of the composites became zero‐order, and the activation energy increased dramatically. The zero‐order kinetics were associated with the acidic sites (H+) created on the clay layers, whereas the increase in the activation energy was coupled with the shielding effect of clay. The kinetic analysis could provide additional mechanistic clues concerning the thermal stability and flammability of polymer/clay nanocomposites. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3713–3719, 2005  相似文献   

12.
The use of a compatibilizer to improve the interactions between poly(trimethylene terephthalate) (PTT) and an organically treated montmorillonite (MMT) clay was studied. Nanocomposites, with and without compatibilizer, were obtained using a torque rheometer; their nanostructures were analyzed by wide angle X‐ray diffraction (WAXD), transmission electron microscopy (TEM), steady state and dynamic rheological measurements, and Fourier transform infrared analysis (FT‐IR). Only intercalated structures were obtained when no compatibilizer was added, independent of the mixing method (one or two steps); when the compatibilizer was added, however, intercalated and exfoliated structures were obtained, depending on the masterbatch composition. When the PTT was not present in the masterbatch, two‐phase exfoliated structures were obtained, with a disperse phase composed of nanoclay's lamellas and reticulated compatibilizer and a matrix phase composed of PTT. The compatibilizer cured due to the presence of the nanoclay's surfactant; a mechanism of cure was proposed in which the epoxide rings of the compatibilizer reacted with the hydroxyl groups of the nanoclay's surfactant, forming ether cross‐linkages. It was also concluded that in order to obtain one‐phase exfoliated structures the two steps mixing method using a masterbatch composition of 50 wt% of PTT, 25 wt% of compatibilizer, and 25 wt% of nanoclay gave the best results; after further dilution in the PTT, an exfoliated nanocomposite with a final concentration of 5 wt% of compatibilizer and 5 wt% of nanoclay was obtained. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Poly(trimethylene terephthalate) (PTT)/montmorillonite (MMT) nanocomposites were prepared by the solution intercalation method. Two different kinds of clay were organomodified with an intercalation agent of cetyltrimetylammonium chloride (CMC). X‐ray diffraction (XRD) indicated that the layers of MMT were intercalated by CMC, and interlayer spacing was a function of the cationic exchange capacity of clay. The XRD studies demonstrated that the interlayer spacing of organoclay in the nanocomposites depends on the amount of organoclay. From the results of differential scanning calorimetric analysis, it was found that clay behaves as a nucleating agent and enhances the crystallization rate of PTT. The maximum enhancement of the crystallization rate for the nanocomposites was observed in nanocomposites containing about 1 wt % organoclay with a range of 1–15 wt %. From thermogravimetric analysis, we found that the thermal stability of the nanocomposites was enhanced by the addition of 1–10 wt % organoclay. According to transmission electron microscopy, the organoclay particle was highly dispersed in the PTT matrix without a large agglomeration of particles for a low organoclay content (5 wt %). However, an agglomerated structure did form in the PTT matrix at a 15 wt % organoclay content. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2902–2910, 2003  相似文献   

14.
A further study on mechanical properties and morphology evolution of high density poly (ethylene)/ethylene‐vinyl acetate/and organically‐modified montmorillonite (HDPE/EVA/OMT) nanocomposites exposed to gamma‐rays (0–200 kGy) has been achieved. The results showed that nanocomposites have superior irradiation‐resistant properties to HDPE/EVA blend in mechanical properties. A transmission electron microscope study verified that a face‐face ordered nanostructure had been induced by gamma‐rays. The aim of this paper is to provide a possible mechanism on how the OMT influences the general properties of irradiated nanocomposites, based on the results of thermal, flammability and mechanical behavior. Three facts are postulated to be responsible for the mechanism. The first is the segregation of nano‐dispersed clay layers not only reduces polymer oxidation but prevents crosslinking reactions. The second is the nanostructure evolution induced by gamma‐rays, which may impart nanocomposites improved elasticity. The last is due to the Hofmann degradation, whose degraded products have opposite roles, accelerating polymer oxidation or promoting crosslinking reactions. These facts interact as well as compete with others. The properties of the nanocomposites strongly depended on the prevalent effects developing with increasing irradiation doses. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Summary: Nanocomposite materials were obtained by blending multi‐wall carbon nanotubes (CN), obtained by acetylene catalytic chemical vapour deposition (CVD) on Co/Fe‐modified NaY zeolite, with syndiotactic poly(propylene) (sPP). The nanotubes, well dispersed in the polymer matrix, favour the crystallization of the sPP helical chains and significantly improve the sPP thermal stability either in nitrogen or in air. The morphology of the sPP affects the behaviour of the sPP degradation in air.

Thermogravimetric analysis in air of pure sPP and the nanocomposite material.  相似文献   


16.
A series of intercalated poly(trimethylene terephthalate) (PTT)/clay nanocomposites were prepared in a twin‐screw extruder by the melt mixing of PTT with either quaternary or ternary ammonium salt‐modified clays. The morphology and structure, along with the crystallization and melting behavior, and the dynamic mechanical behavior of the composites were characterized by X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and dynamic mechanical thermal analysis. The results showed that the PTT chains could undergo center‐mass transport from the polymer melt into the silicate galleries successfully during the blending and extrusion process. More coherent stacking of the silicate layers was reserved at higher clay concentrations and shorter blend times. Compared with conventionally compounded composites, the nanoscale‐dispersed organophilic clays were more effective as crystal nucleation agents. The influence of the nanosilicates on the crystallization and melting behavior of PTT became distinct when the concentration of clay was around 3 wt %. The changes in the crystallization behavior of the polymer/clay nanocomposites depended not only on the size of the silicates but also on the intrinsic crystallization characteristics of the polymers. The resulting nanocomposites showed an increase in the dynamic modulus of PTT and a decrease in the relaxation intensity (both in loss modulus and loss tangent magnitude). © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2275–2289, 2003  相似文献   

17.
Poly(p‐dioxanone) (PPDO)/montmorillonite nanocomposites were prepared through the in situ ring‐opening polymerization of p‐dioxanone (PDO) and three types of montmorillonites (natural sodium montmorillonite, montmorillonite modified by octadecyltrimethyl ammonium chloride, and montmorillonite modified by hydroxyethylhexadecyldimethyl ammonium bromine) in the presence of triethylaluminum. Montmorillonite could accelerate the polymerization of PDO, and the viscosity‐average molecular weight of PPDO could reach 44,900 g/mol in 0.5 h. A nucleating effect of montmorillonite was observed, and the crystallization temperature of PPDO was increased by 18 °C. All three montmorillonites could improve the thermal stability of PPDO and increase the glass‐transition and melting temperatures of PPDO. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2298‐2303, 2005  相似文献   

18.
19.
Summary: The study of the structure and the rheological properties of poly(propylene) (PP)/montmorillonite (MMT)/maleinated PP (MAPP) composites strongly suggests that a silicate network may form under certain conditions. Network formation could not be proven unambiguously with the usual techniques, i.e., with TEM and by plotting the frequency dependence of viscoelastic properties. Cole‐Cole plots detect the network very sensitively. A certain number of silicate layers are needed to create a house‐of‐cards structure. A threshold concentration of MAPP exists in the investigated system, which depends on the silicate content.

Cole‐Cole representation of the viscoelastic properties of PP/OMMT/MAPP nanocomposites.  相似文献   


20.
Intercalated nanocomposites comprised of poly(propylene carbonate) (PPC) and organo-vermiculite (OVMT) was first prepared via direct melt compounding of the alkali-vermiculite intercalated host with PPC in a twin rotary mixer. The dispersion and morphologies of OVMT within PPC were investigated by X-ray diffraction and transmission electron microscopic techniques. The results revealed the formation of intercalated-exfoliated vermiculite sheets in the PPC matrix. Because of the thermally sensitive nature of PPC, thermal degradation occurred during the melt compounding. The degradation led to a deterioration of the mechanical properties of the nanocomposites. Tensile test showed that the yield strength and modulus of the nanocomposites decrease with increasing vermiculite content. The degradation mechanism was discussed according to the results of GPC and TGA measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号