首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A series of novel four‐arm A2B2 and A2BC and five‐arm A2B2C miktoarm star polymers, where A is poly(dimethylsiloxane) (PDMS), B is polystyrene (PS), and C is polyisoprene (PI), were successfully synthesized by the combination of chlorosilane and benzyl chloride linking chemistry. This new and general methodology is based on the linking reaction of in‐chain benzyl chloride functionalized poly(dimethylsiloxane) (icBnCl–PDMS) with the in‐chain diphenylalkyl (icD) living centers of PS‐DLi‐PS, PS‐DLi‐PI, or (PS)2‐DLi‐PI. icBnCl–PDMS was synthesized by the selective reaction of lithium PDMS enolate (PDMSOLi) with the chlorosilane groups of dichloro[2‐(chloromethylphenyl)ethyl]methylsilane, leaving the benzyl chloride group intact. The icD living polymers, characterized by the low basicity of DLi to avoid side reactions with PDMS, were prepared by the reaction of the corresponding living chains with the appropriate chloro/bromo derivatives of diphenylethylene, followed by a reaction with BuLi or the living polymer. The combined molecular characterization results of size exclusion chromatography, 1H NMR, and right‐angle laser light scattering revealed a high degree of structural and compositional homogeneity in all miktoarm stars prepared. The power of this general approach was demonstrated by the synthesis of a morphologically interesting complex miktoarm star polymer composed of two triblock terpolymer (PS‐b‐PI‐b‐PDMS) and two diblock copolymer (PS‐b‐PI) arms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6587–6599, 2006  相似文献   

2.
In this investigation, the preparation and characterization of partially pyrolyzed membranes based on poly(dimethylsiloxane) (PDMS) are described. These membranes were obtained by the crosslinking of silanol‐terminated PDMS with multifunctional nanoclusters derived from the reaction of pentaerythritoltriacrylate with 2‐aminoethyl‐3‐aminopropyltrimethoxysilane and the in situ polycondensation of tetraethylortosilicate, followed by the thermal treatment of the resulting membranes at different temperatures. The partially pyrolyzed membranes were characterized with infrared spectroscopy, thermogravimetry, elemental analyses, dynamic mechanical analysis, small‐angle X‐ray scattering, and scanning electron microscopy. The membranes exhibited improvements in the thermal stability and mechanical strength. Even with distinct compositions with respect to the Si/O and Si/C ratios, the flexibility of these materials was maintained. The flux rates of the gases through the membranes were measured for N2, H2, O2, CH4, and CO2, at 25 °C. The permeability of the membranes changed with increases in the pyrolysis and oxidation temperatures. These membranes could be described as PDMS chains separated by inorganic clusters. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 299–309, 2007.  相似文献   

3.
Number‐ and weight‐average molecular weight of condensation polymers formed in the mixture of primary molecules carrying different species of functional groups A and B are derived by the cascade theory. These functional groups are allowed to form multiple junctions of arbitrary multiplicity k. From the weight average, the gel point condition is found to be given by 1 ? (fw ? 1)(μA,A ? 1) ? (gw ? 1)(μ B,B ? 1) + (fw ? 1)(gw ? 1)Dμ = 0, where fw and gw are average functionality of the primary molecules, μ αβ the average multiplicity of β groups in the junctions where a path of an α‐group enters, and Dμ ≡ (μA,A ? 1)(μ B,B ? 1) ? μ A,Bμ B,A the multiplicity determinant. Possible applications to thermoreversible gelation are suggested. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2413–2421, 2003  相似文献   

4.
Highly branched, poly(caprolactone) (PCL) containing segmented poly(ester urethane)s were synthesized via polymerization of A2 and oligomeric B3 type monomers. An isocyanate functional butanediol‐based A2 hard segment was synthesized and immediately reacted with a poly(caprolactone)‐based trifunctional (B3) soft segment. Characterization of thermal properties using DMA and DSC analysis demonstrated that the PCL segment remained amorphous in branched poly(ester urethane)s. Conversely, the crystallinity of PCL segment was retained to some extent in a linear analogue with equivalent soft segment molecular weight. Tensile testing revealed a slight decrease in Young's modulus and tensile strength for the highly branched polymers compared with a linear analogue. However, highly branched poly(ester urethane)s demonstrated lower hysteresis. In addition to synthesis of highly branched polymers, poly(ester urethane) networks were synthesized from a highly branched hydroxyl‐terminated precursor and a low molar mass diisocyanate as the crosslinking agent. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6285–6295, 2008  相似文献   

5.
The hyperbranched polytriazole (hb‐PTA) containing second‐order nonlinear optical chromophore was synthesized through “A2 + B3” approach based on “click reaction.” Its corresponding linear analogue (l‐PTA) was prepared for comparison. The hb‐PTA has better solubility in common organic solvents than the l‐PTA. Both the polymers exhibit good thermal stability with 5% weight loss temperatures over 260 °C. The poled film of hb‐PTA exhibits much higher second‐harmonic coefficient (96.8 pm/V) than that of l‐PTA (23.5 pm/V). The three‐dimensional spatial isolation effect resulting from the highly branched structure and the crosslinking of the terminal acetylene groups at moderate temperature play important roles in the enhancement of optical nonlinearity. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1140–1148, 2008  相似文献   

6.
The synthesis and characterization of two groups of novel networks prepared from cyclolinear polysiloxanes are described. The first group of networks from cyclolinear polysiloxanes (N‐CLPSs) was synthesized by the hydrosilation of vinyl‐terminated cyclolinear polyorganosiloxanes [prepared from diacetoxydiethyltetramethylcyclotetrasiloxane (D4Et2OAc2) or diacetoxytriethylpentamethylcyclopentasiloxane (D5Et3OAc2)] with a copolymer of dimethylsiloxane and methylhydrosiloxane as the crosslinking agent. Hydrosilation was effected with a platinum carbonyl catalyst with a cyclovinylsiloxane moderator. The second group of networks (N‐eCLPSs) was prepared similarly with extended cyclolinear polysiloxanes. The mechanical properties of the novel networks were comparable to those of polydimethylsiloxane networks (N‐PDMS). The oxygen permeabilities were similar to or slightly higher than that of N‐PDMS. The glass‐transition temperatures of D4Et2OAc2‐ and D5Et3OAc2‐based N‐CLPSs were ?67.8 and ?90.8 °C, respectively, whereas the incorporation of polydimethylsiloxane spacers into similar N‐eCLPSs lowered their glass‐transition temperatures to ?109.7 and ?115.0 °C. Upon heating to 800 °C in air, N‐CLPSs yielded more residue than N‐eCLPSs, which in turn yielded more residue than N‐PDMS. These results may have been due to the presence of T units in the cyclic siloxane units, which may have inhibited chain degradation or the formation of volatile products. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4053–4062, 2006  相似文献   

7.
At the start of our research program concerned with the elucidation of the crosslinking polymerization mechanism leading to interpenetrating polymer network (IPN) formation, in which IPNs consist of both polymethacrylates and polyurethane (PU) networks, this article deals with the polyaddition crosslinking reaction leading to PU network formation. Therefore, 2‐methacryloyloxyethyl isocyanate (MOI) was radically copolymerized with methyl methacrylate (MMA) in the presence of CBr4 as a chain‐transfer agent. The resulting poly(MMA‐co‐MOI)s, having pendant isocyanate (NCO) groups as novel multifunctional polyisocyanates, were used for polyaddition crosslinking reactions with ethylene glycol as a typical diol. The second‐order rate constants depended on both the functionality of poly(MMA‐co‐MOI) and the NCO group concentration. The actual gel points were compared with the theoretical ones calculated according to Macosko's equation; the deviation of the actual gel point from the theoretical value became more remarkable for a greater functionality of poly(MMA‐co‐MOI) and at a lower NCO group concentration or at a lower poly(MMA‐co‐MOI) concentration. These are discussed mechanistically, with consideration given to the significance of intramolecular cyclization and intramolecular crosslinking reactions leading to the shrinkage of the molecular size of the prepolymer, along with the data of the intrinsic viscosities of resulting prepolymers and the swelling ratios of resulting gels. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 606–615, 2003  相似文献   

8.
To overcome the deficiency of mean field method in introducing the intramolecular cyclization and the steric effects, the reactive bond fluctuation model was applied to study nonideal hyperbranched A2 + B3 polycondensation, which has high sensitivity of gelation to the concentration of monomers, the feed ratio and the reactivity of functional groups. Simulation demonstrated that the mean field theory overestimated hyperbranched polymerization especially at high reaction conversion in the system with low monomer concentration where the intramolecular cyclization and the steric hindrance play crucial influences on molecular weight, molecular weight distribution and gel point (GP). The dependences of GP on the monomer concentration, feed ratio, and the reactivity of groups are clearly shown. We further simulated a specific polycondensation system with aromatic terephthaloyl chloride (TCl, A2) and 1,1,1‐tris(4‐trimethylsiloxyphenyl)ethane (TMS‐THPE, B3) (Macromolecules 2007, 40, 6846) using fitting technology, and estimated molecular weight, molecular weight distribution, GPs, and the conformation of hyperbanched polymer. It provides a feasible way to quantitatively understand hyperbranched polymerization with the reaction specificity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
Poly(acrylic acid)‐l‐polytetrahydrofuran (PAA‐l‐PTHF) and poly(methacrylic acid)‐l‐polytetrahydrofuran (PMAA‐l‐PTHF) networks were synthesized by the free‐radical copolymerization of hydrophobic polytetrahydrofuran diacrylates with hydrophilic acrylic acid and methacrylic acid. Their swelling behavior was studied. Both PAA‐l‐PTHF and PMAA‐l‐PTHF networks had four solubility parameters, which indicated that they exhibited not only the properties of both hydrophobic and hydrophilic segments but also the combined properties of these two segments. The swell of these two series of networks was composition‐dependent in organic solvents and water. The relationship between the equilibrium swelling ratio (SRe) in nonpolar solvents and the composition of the networks [the weight fraction of the PTHF segment (PTHF%)] may be expressed with a linear equation: SRe = A × PTHF% + B. A and B are parameters that relate to the interaction of hydrophilic and hydrophobic segments with nonpolar solvents and to the properties of the networks, respectively. Because of the presence of a ? COOH group, these two network series were pH‐sensitive when the content of hydrophilic segments was higher. The pH sensitivity of networks could be controlled not only by the composition of the networks but also by the hydrophobic degree of the hydrophilic segments. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1784–1790, 2001  相似文献   

10.
A series of hyperbranched poly(arylene ether phosphine oxide)s (HB PAEPOs) were prepared via an A2 + B3 polymerization scheme with tris(4‐fluorophenyl)phosphine oxide as B3, and a variety of bisphenols as A2. The effects of the reactivity of the A2 monomer, the A:B ratio, the addition mode, the solvent, and the concentration on the final molecular weight, polydispersity index (PDI), and degree of branching (DB) were studied. Soluble HB PAEPOs with weight‐average molecular weights of up to 299,000 Da were achieved. Reactions in which the A2 component was added slowly resulted in lower DBs (0.2–0.5), whereas the slow addition of the B3 component provided samples with DBs of approximately 0.75. Reactions performed under high‐dilution conditions afforded completely soluble materials with weight‐average molecular weights of 9000–12,100 Da and PDI values as low as 2.20. The molecular weights achieved under high‐dilution conditions were independent of the mode of monomer addition. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3871–3881, 2003  相似文献   

11.
We have determined with infrared spectroscopic ellipsometry how the nature of the interface between a thin poly(dimethyl siloxane) (PDMS) coating and its substrate affects the rate of PDMS crosslinking reactions. Reactions between vinyl (? CH?CH2) end groups on PDMS and silyl (SiH) groups in a crosslinker (hydrosilylation) and between SiH groups and silanol (SiOH) groups, during the so‐called postcure crosslinking stage, have been probed in situ. The overall consumption of SiH follows first‐order reaction kinetics. The first‐order reaction coefficient (k1) for the hydrosilylation crosslinking reaction is the same for coatings on three different substrates: native oxide on silicon (SiO2/Si), polystyrene (PS), and poly(ethylene terephthalate). For the slower postcure reactions, however, the rate of SiH consumption depends on the substrate. In 2.5‐μm PDMS coatings on PS, k1 is about seven times greater than k1 in the same coating on SiO2/Si. In PDMS coatings on a PDMS substrate, when the effect of the interface is thus minimal, k1 is 16 times higher than on SiO2/Si. The dependence of k1 on the type of interface is probably the result of the interfacial segregation and complexation of the Pt catalyst for the postcure reactions. We propose that polar surfaces more strongly attract Pt and form complexes that inhibit the postcure reactions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1421–1431, 2004  相似文献   

12.
The terminal alkyne homocoupling reaction (oxidative alkyne coupling) is presented here as a new route for the preparation of A2B2 type 4‐miktoarm star copolymer. The block copolymer with terminal alkyne at the junction point prepared by NMP‐ATRP and ROP‐NMP sequential routes is coupled via diyne formation to give (PS)2‐(PMMA)2 and (PCL)2‐(PS)2 4‐miktoarm star polymers, respectively, by using a combination of (PPh3)2PdCl2/PPh3/CuI in a solvent mixture of Et3N/CH3CN at room temperature for 72 h. The molecular weight, intrinsic viscosity ([η]), radius of gyration (Rg), and hydrodynamic radius (Rh) of A2B2 4‐miktoarm star copolymers were calculated using triple‐detection GPC as results of three detectors response. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6703–6711, 2008  相似文献   

13.
We extended our investigations of rubbery wound closure adhesives and created novel flexible networks by crosslinking cyanoacrylated silicone rubbers (i.e., commercial methylhydrosiloxane‐dimethylsiloxane copolymers, PMHS‐co‐PDMS) with N,N‐dimethyl‐p‐toluidine in tetrahydrofuran and hexamethyldisiloxane solvents at room temperature. Cyanoacrylation was achieved by hydrosilating (anthracene‐protected) allyl cyanoacrylate with PMHS‐co‐PDMS. Steric hindrance and the molecular weight of the copolymer strongly affect the extent of hydrosilation. The rate of crosslinking is proportional with the number of cyanoacrylate groups in the copolymer and networks form in seconds with appropriate amounts of initiator. Networks on porcine skin yield well‐adhering flexible optically‐transparent colorless conformal coatings of good “feel” appropriate for clinically useful non‐occlusive “breathable” skin or wound protectors. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1367‐1372  相似文献   

14.
The rubberlike elastic behavior of bimodal poly(dimethylsiloxane) (PDMS) networks was investigated by the Monte Carlo simulation method and enumeration calculation method on the basis of the rotational‐isomeric‐state (RIS) model. These bimodal PDMS networks consist of short chains (chain length from 10 to 20) as well as long chains (chain length equal to 150). For long PDMS chains, through generating many PDMS conformations in the equilibrium state using the Monte Carlo simulation method we can obtain the average Helmholtz free energy and the average energy. For short PDMS chains with chain lengths from 10 to 20, as the total number of conformations is only from 6.56 × 103 to 3.87 × 108, we adopt the enumeration calculation method. The deformation is partitioned nonaffinely between the long and short chains, and this partitioning can be determined by requiring the free energy of the deformed network to be minimized. Chain dimensions and thermodynamic statistical properties of bimodal PDMS networks at various elongation ratios are discussed. We find that elastic force f increases with elongation ratio λ; the energy contribution fu to elastic force is significant, and the ratio of ranges from 0.15 to 0.36 at T = 343 K. In the meantime, elastic force f increases with the average energy 〈U〉. The energy change in the process of tensile elongation is taken over, which has been ignored in previous theories. Our calculations may provide some insights into the phenomena of rubberlike elasticity of bimodal networks. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 105–114, 2002  相似文献   

15.
To understand the fundamental aspects of the polycondensation reaction of hydrolyzed tetraethoxysilane (TEOS) and silanol‐terminated poly(dimethylsiloxane) (PDMS), we modeled the reaction system as a step‐growth polymerization of A4 and polydisperse A2, assuming the reactivities of all functional groups are equal. The analytical solution for the weight‐average molecular weight is developed, and in addition, a Monte Carlo simulation is conducted to investigate the detailed structural development. It was found that as long as the molecular weight of PDMS is much larger than TEOS, the apparent behavior is significantly different from usual gelling systems. The gel point is relatively insensitive to the weight fraction of crosslinker (TEOS), the polydispersity index may decrease during polymerization before the rapid increase to infinity, and the molecular weight distribution profile may not show a significant broadening toward gelation. Even though the present model assumes a complete random reaction process among functional groups, formation of a heterogeneous structure in which a tight core consisting of TEOS‐based molecules is surrounded by soft PDMS chains was observed in the Monte Carlo simulation.  相似文献   

16.
In this article, the hydrosilylation reaction of carbonyl groups of acetate derivatives and SiH groups of hydride‐terminated polydimethylsiloxane at high temperature (100–130 °C) are described. Triruthenium dodecacarbonyl, Ru3(CO)12, was used as effective catalyst for hydrosilylation reaction. The hydrosilylation reactions with octyl acetate and 4‐heptyl acetate were investigated by multinuclear NMR spectroscopy (1H, 13C, and 29Si). This work provides evidence of the addition reaction of SiH groups onto carbonyl groups. The influence of the nature of the acetate structure on the reaction kinetics was shown and the slight contribution of side reactions at high temperature highlighted. Hydrosilylation reaction was extent to the crosslinking of ethylene‐vinyl acetate (EVA) copolymer in the same range of temperature. The formation of EVA chemical network was demonstrated by HR‐MAS NMR spectroscopy and by measuring the gel fraction of EVA chains in hot toluene. From Flory theory, the crosslinking density of elastic strand was calculated to be 80 mol m?3 in agreement with the measurements from swelling ratio (VA/SiH molar ratio: 11.8). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
A new method for determining the extent of reaction of thermoset elastomers was developed based on equilibrium swelling and dynamic mechanical analysis (DMA). The extent of reaction was defined based on the molecular weight between crosslinks (Mc) of a polymer sample in relation to Mc at the onset of gelation and at complete reaction. The molecular weight between crosslinks was measured using equilibrium swelling, whereas rheology and DMA were used to determine the exact point of gelation and reaction completion, respectively. The extent of reaction of poly(1,8‐octanediol‐co‐citrate) at various polymerization conditions was investigated and this method was used to study the relationship between mechanical properties, molecular weight between crosslinks, and extent of reaction. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1318–1328, 2008  相似文献   

18.
Novel oligodimethylsiloxane‐based polymers with alkyl side chain were synthesized in bulk by step‐growth polymerization between α,ω‐glycidyl ether oligodimethylsiloxanes and a monoalkylamine in the absence of catalyst and at temperatures ranging between 80 and 180 °C. Matrix assisted laser desorption ionization time of flight results attested for the high reactivity of the amine functions with the glycidyl groups and revealed that the main polymer structure was (A2B2)n type with alkyl moieties as dangling chains. No etherification was observed during the reaction even at high temperatures and the nature of the end groups strongly depended on the molar ratio between glycidyl and amine functions. Polymerization reactions were followed by 1H NMR and the kinetics of the glycidyl‐amine reaction pointed out the dependence of temperature, molar ratio, and the molar mass of the oligodimethylsiloxane. High conversion rates were obtained, especially with the lowest molecular weight oligodimethylsiloxane. An optimized kinetic model derived from the Horie's model was discussed and permitted to correctly fit the experimental data. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
The synthesis and characterization of novel tricomponent networks consisting of well‐defined poly(ethylene glycol) (PEG) and poly(dimethylsiloxane) (PDMS) strands crosslinked and reinforced by poly(pentamethylcyclopentasiloxane) (PD5) domains are described. Network synthesis occurred by dissolving α,ω‐diallyl PEG and α,ω‐divinyl PDMS prepolymers in a common solvent (toluene), introducing a stoichiometric excess of pentamethylcyclopentasiloxane (D5H) to the charge, inducing the cohydrosilation of the prepolymers by Karstedt's catalyst and completing network formation by the addition of water. Water in the presence of the Pt‐based catalyst oxidizes the SiH groups of D5H to SiOH functions that immediately polycondense and bring about crosslinking. The progress of cohydrosilation and polycondensation was followed by monitoring the disappearance of the SiH and SiOH functions by Fourier transform infrared spectroscopy. Because cohydrosilation and polycondensation are essentially quantitative, overall network composition can be controlled by calculating the stoichiometry of the three network constituents. The very low quantities of extractable (sol) fractions corroborate efficient crosslinking. The networks swell in both water and hexanes. Differential scanning calorimetry showed three thermal transitions assigned, respectively, to PEG (melting temperature: 46–60 °C depending on composition), PDMS [glass‐transition temperature (Tg) = ~?121 °C], and PD5 (Tg = ~?159 °C) and indicated a phase‐separated tricomponent nanoarchitecture. The low Tg of the PD5 phase is unprecedented. The strength and elongation of PEG/PD5/PDMS networks can be controlled by overall network composition. The synthesis of networks exhibiting sufficient mechanical properties (tensile stress: 2–5 MPa, elongation: 100–800%) for various possible applications has been demonstrated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3093–3102, 2002  相似文献   

20.
This study reanalyzes some elastomeric properties in elongation reported for poly(dimethylsiloxane) (PDMS) networks of high cross-link functionality which had been prepared by using multifunctional siloxane oligomers to end link vinyl-terminated PDMS chains. The extent of reaction of the vinyl end groupsP vi spanned the range of 0.40 to 0.95. These networks had elongation moduli that significantly exceeded the values predicted by the Flory-Erman theory, except at very low values ofP vi. Trends in their stress-strain isotherms, as characterized by the Mooney-Rivlin constants 2C 2 and the ratio 2C 2/C1, also appeared to be different from those predicted by theory. Neglected in such standard analyses, however, was the fact that the segments between cross-links along the junction precursor molecules can themselves act as short network chains, contributing to the modulus and giving a strongly bimodal distribution of both network chain lengths and cross-link functionalities. Of particular interest is the apparent change in functionality with extent of reaction and chain length distribution. The results thus obtained do suggest strong dependence of the observed values of the phantom modulus on the network chain-length distribution, particularly at very small values of the ratio of the length of the short chains to the long ones. Calculations based on recognition of these complications can be used to characterize more realistically the deformation of such networks. The results give much better agreement with experiment. Such behavior could be an important characteristic of elastomeric networks in general.Also, a preliminary attempt was made to bridge theory with experiment based on Kloczkowski, Mark, and Erman's recent theory of fluctuations of junctions in regular bimodal networks. The agreement between theory and experiment thus obtained is rather satisfactory and lends further support to assumptions that take into account the possibly bimodal nature of these high-functionality networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号