首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thermal stable aromatic polyimide (PI) with side‐chain second‐order nonlinear optical (NLO) chromophores has been developed. The PI was prepared by the ring‐opening polyaddition of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride with a new diamine having two N‐ethyl‐N‐[4‐[(6‐chlorobenzothiazol‐2‐yl)diazenyl]phenyl]‐2‐aminoethanol units as the NLO chromophore, followed by poling during or after the thermal imidization process. The resulting PI had number and weight‐average molecular weights (Mn, Mw) of 25,000 and 80,000, respectively, and a relatively high glass transition temperature of 180°C. The second harmonic coefficient (d33) of PI at the wavelength of 1.064 μm was 138 pm/V (329.6 × 10−9 esu) and remained unchanged at elevated temperatures. The corona poling process of the NLO‐substituted poly(amic acid) to the PI was also studied in detail by measuring the second harmonic generation (SHG) from the polymer films. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1321–1329, 1999  相似文献   

2.
Some thermally stable second‐order nonlinear optical (NLO) polyimides were synthesized. The polyimides were prepared by the ring‐opening polyaddition of 4,4′‐(hexafluoroisopropylidene) diphthalic anhydride and pyromellitic dianhydride with two aromatic azodiamine derivatives as the NLO chromophores. These chromophores, based on a nitro group connected with azobenzene as the acceptor end of a donor–π‐bridge–acceptor chromophore and a diamine group as the donor end, had specific chemical stability. On the basis of ZERNER'S INDO methods, according to the sum‐over‐states formula, a program for the calculation of nonlinear second‐order optical susceptibilities was devised. The resulting polyimides had high number‐average and weight‐average molecular weights of up to 26,000 and 53,500, respectively, and a large glass‐transition temperature of 248 °C. With an in situ poling and temperature ramping technique, the optimal temperatures (Topt's) for corona poling were obtained for the largest second‐order NLO response. The electrooptic coefficient (γ33) of a polyimide at a wavelength of 830 nm was up to 21 pm/V after corona poling under its Topt, and the value remained at elevated temperatures (>90.6% was retained at 240 °C for >120 h). The thermal stability of the NLO polyimides was studied with UV spectrometry after poling of the films. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2478–2486, 2002  相似文献   

3.
A series of organically modified sol–gel films with various acceptor groups were prepared and characterized. All the chromophores exhibit much larger microscopic optical nonlinearity compared with the classical chromophore DR1 in solvatochromic measurement. Using in situ second harmonic generation (SHG) technique, the optimal poling temperatures (T opt) for sol–gel films were obtained. The second harmonic coefficients (d 33) of hybrid films at the wavelength of 1,064 nm were in the range of 50.1–70.3 pm/V after corona poling under their T opt. The NLO stabilities of these poled films were also investigated by tracing the d 33 value as a function of temperature and time. One of the hybrid films, which was prepared from chromophore 2,4-dinitro-4′-(N,N-dihydroxyethyl) aminoazobenzene exhibited a combination of large optical nonlinearity and high NLO stability. Furthermore, the effects of molecular structure on the NLO property and thermal stability of the hybrid films were also discussed.  相似文献   

4.
A novel high glass‐transition temperature (272 °C) polyurea functionalized by a multiple charge‐transfer chromophore, 2‐{4‐[4,5‐bis(4‐nitrophenyl)imidazolyl]phenyl}‐4,5‐bis(4‐aminophenyl)imidazole, was synthesized. Simultaneous poling and polymerization and the in situ second‐harmonic generation (SHG) measurement technique was carried out to evaluate the thermal stability of the poling‐induced orientation. The nonlinear optical coefficient d33 of poled polyurea film was 24 pm/V at 1064 nm fundamental wavelength. The SHG signal of the poled polymer film was quite stable below 200 °C and still remained 80% of its initial value after heating at 250 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4297–4301, 2002  相似文献   

5.
Methacrylate polymers containing different molar contents of nonlinear optical (NLO) active molecular segments based on 2‐[4‐(N‐methyl,N‐hydroxyethylamino)phenylazo]‐phenyl‐6‐nitrobenzoxazole chromophores were synthesized, and their phase behavior and second‐order NLO properties were investigated. Polymers containing 6–17 mol % chromophore segments allowed the preparation of amorphous and optically clear thin films. Some mesomorphic structuration was exhibited by a polymer with 33 mol % chromophoric units. However, this feature did not prevent the possibility of investigating the NLO properties. Nonlinear resonance‐enhanced d33 coefficients were determined by second harmonic generation experiments on spin‐coated, corona‐poled thin films at λ = 1064 nm. Values ranging from 40 to 60 pm/V were measured with increasing chromophore molar contents. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1841–1847, 2003  相似文献   

6.
Photocrosslinkable second-order nonlinear optical (NLO) polymers were synthesized from cationic copolymerization of a vinyl ether monomer bearing 4′-nitrobiphenyl-4-oxy group as the NLO chromophore with a vinyl ether monomer bearing cinnamoyl group as the photoreactive moiety. To obtain a suitable poling method involving photocrosslinking, which is capable of inducing a higher and more stable second-order nonlinear coefficient, d33, for NLO polymer films, some poling procedures were investigated. An optimized poling method was as follows. Ultraviolet (UV) irradiation is performed for 90 sec during poling at 50°C for 20 min, followed by poling at 150°C for 20 min. By using this poling method NLO polymer films exhibited a higher and considerably stable d33 value at room temperature, even though they had rather lower glass transition temperatures before photocrosslinking. Some photocrosslinking mechanism for NLO polymers investigated here were considered.  相似文献   

7.
An organosoluble polyimide based on bipyridyl moiety and an alkoxysilane dye have been developed for second‐order non‐linear optics (NLOs). This bipyridine‐containing polyimide exhibits a glass transition temperature of 254°C and a degradation temperature of 400°C. An NLO‐active semi‐interpenetrating network (IPN) system was prepared by blending the polyimide with the alkoxysilane dye via in situ sol‐gel process of alkoxysilane. The selection of this bipyridine‐containing polyimide as the polymeric matrices provides improved solubility and thermal stability, and most importantly enhanced intermolecular interactions. No aggregation of the NLO chromophores in the polyimide matrices was observed through morphology and NLO studies. Under the limitation of chromophore degradation at elevated temperatures, the pristine poled/cured alkoxysilane dye exhibits poorer long‐term stability. By introducing the polyimide upon a silica network by the semi‐IPN system, randomization of the oriented chromophores can be effectively suppressed. Using in situ contact poling, the r33 coefficients of 2.2–17.0 pm/V were obtained for the optically clear semi‐IPN NLO materials. Excellent temporal stability (100°C) was also achieved for these semi‐IPN materials. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
A series of chromophore-functionalized polyimide prepolymers with excellent processibility were prepared by a Michael addition reaction of diamine chromophore 2 with structurally different bismaleimide (BMI) monomers. The effects of the BMI moiety's structure and thermal curing condition on glass transition temperature (Tg) and thermal stability of the polyimides were studied by DSC, TGA, and FTIR. Among the five cured polyimides, PI3, bearing a sulfone moiety, exhibited the highest Tg and thermal decomposition temperature (Td). Its corresponding prepolymer, PP3, was selected to evaluate NLO properties in a simultaneously poling and thermal polymerization process. A relatively large poling-order parameter was observed. The second-order nonlinear coefficient, d33, was 25 pm/V at 1064 nm fundamental wavelength. The second harmonic generation signal was almost without decay up to 170°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3598–3605, 1999  相似文献   

9.
Two series of novel electro‐optic (EO) polycarbonates containing two different kinds of nonlinear optical (NLO) chromophores with tricyanofurane (TCF) electron acceptor have been successfully prepared through the facile polycondensation between diol NLO chromophore and bisphenol A bis(chloroformate). These new polycarbonates which were characterized by 1H‐NMR and Fourier transform infrared exhibited good solubility in common polar organic solvents. They also showed glass transition temperatures (Tg) in the range of 124–156 °C. The morphology studies indicated that these polycarbonates had good film quality before and after corona poling. The EO coefficients (r33) of two polycarbonates films were up to 45 pm/V (PC‐TCFC‐2) and 75 pm/V (PC‐DFTC‐3) at the wavelength of 1310 nm. Moreover, good temporal stability of the poling‐induced dipole alignment was also achieved, and the resulting poled films of PC‐TCFC‐2 and PC‐DFTC‐3 could retain 90 and 80% of the initial EO activities at 85 °C for more than 500 h, respectively. Both EO activity and temporal stability results were better than the guest–host EO polymers containing the same concentration chromophores, which indicated that such kind of polycarbonates could effectively suppress the intermolecular electrostatic interaction and translate microscopic molecular hyperpolarizability into macroscopic EO activity. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2841–2849.  相似文献   

10.
This study synthesized and characterized a novel series of polyurethanes containing nonlinear optic (NLO) chromophores, which possess different dimensional or various isolation‐groups. These chromophores are based on 4‐(dicyanomethylene)‐2‐methyl‐6‐(p‐(dimethylamino)styryl)‐4H‐pyran (DCM‐typed dye). The NLO polyurethane containing a one‐dimensional isolation‐group of chromophores efficiently enhances thermal stability, but poling efficiency is not always improved as the size of isolation‐group increases. The enormous isolation group restrained the mobility of chromophore in the polymer matrix and shows a worsening SH intensity. The maximum second harmonic coefficient (d33 = 68.7 pm/V) is displayed as benzene is attaching to chromophore moieties as isolation‐group in this study. Polyurethane containing two‐dimensional chromophore shows superior thermal stability due to the large volume required to rotate the chromophore in the polymer matrix. Two‐dimensional system exhibits lower SH intensity due to the rigid polymer main chain and twisted conjugated plane. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4937–4949, 2009  相似文献   

11.
An ω‐amino carboxylic acid monomer that contained a nonlinear optical (NLO) chromophore was prepared by a convergent synthesis. Strategies for selective protection/deprotection of the amino and carboxylic acid functionalities were developed. The protected monomer, 4‐[N‐(4‐benzyloxycarbonyl)butyl‐N‐methylamino]‐4′‐[2″,5″‐bis(decyloxy)‐4″‐(phthalimidomethyl)benzylsulfonyl]azobenzene, could be deprotected selectively or sequentially to give HOOC‐monomer‐N‐phthaloyl, benzyl‐OOC‐monomer‐NH2, or HOOC‐monomer‐NH2. Sequential synthesis was performed to yield main‐chain NLO dimers and tetramers. This was accomplished by selective deprotection and dicyclohexylcarbodiimide coupling. The HOOC‐monomer‐NH2 was polymerized by treatment with diphenylphosphoryl azide to give a main‐chain NLO polyamide. The monomer, dimer, tetramer, and polymer NLO materials were characterized by 1H, 13C, IR, and UV–visible spectroscopy as well as by gel permeation chromatography, differential scanning calorimetry, and elemental analysis. The NLO properties of these materials were measured. Thin films of the oligomers and polymer were prepared by spin casting on indium‐tin oxide coated glass. The second‐order NLO properties of the oligomers and polymer thin films were studied by in situ corona poling/second‐harmonic generation and attenuated total reflection methods. The optimal poling temperatures were significantly lower than the melting temperatures or glass‐transition temperatures of the oligomers and polymer. The poling efficiency increased in the following order: monomer, oligomers, and polymer. An electro‐optic coefficient of 4 pm/V at 1.06 μm was obtained for the polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 546–559, 2000  相似文献   

12.
Thermally stable poly(α-methyl styrene-co-maleimide) (MSMI) and poly(α-methyl styrene-co-4-carboxyphenyl maleimide) (MSCM) substrate polymers were obtained readily by free radical polymerization of comonomers. Introduction of a DR1 chromophore to the maleimide units of MSMI substrate polymer by the Mitsunobu reaction was dependent on the reaction solvent. The degree of substitution of DR1 into the MSMI polymer was bound to be 91.1 mol % and 0.4 mol % by UV spectrometers in the THF and DMF solvent, respectively. DR1 chromophore was, however, substituted in the MSCM polymer at 33.0 mol % by Mitsunobu reaction in the THF solvent. Both substrate and NLO polymer exhibited high thermal stability due to the incorporation of maleimide units in the polymer chain. The glass transition temperature (Tg) and initial decomposition temperature (Ti) of the NLO polymer were in the range of Tg = 185°C and Ti = 310–345°C. The electro-optic coefficient (r33) of NLO polymer was determined with an experimental setup capable of the real-time measurement while varying both the poling field and temperature. The NLO polymer MSMI-THF had a higher r33 value than MSCM-DR due to an increased degree of substitution of DR1 chromophore. MSMI-THF had a maximum r33 value of 16 pm/V at 135 MV/m poling field with a 632.8 nm light source. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3715–3722, 1999  相似文献   

13.
We report the characterization of copolymers of methyl methacrylate (MMA) and 2‐propenoic acid, 2‐methyl‐, 2‐[[[[4‐methyl‐3‐[[(2‐methyl‐4‐nitrophenyl)amino]carbonyl]aminophenyl]carbonyl]oxy]ethyl ester (PAMEE) exhibiting nonlinear optical (NLO) properties. The linear copolymer, poly(MMA‐co‐PAMEE), with a NLO chromophore incorporated into PAMME exhibits a high glass transition temperature of 131°C, as determined by DSC. The thin films of copolymers, which were cast on microscopic glass slides, were optically transparent, and the corona poled polymers produced relatively large and stable second harmonic generation (SHG) signals at room temperature. The nonlinear coefficient d33 of the crosslinked copolymer containing 30 wt % PAMEE was 30.8 pm/V. The SHG signal strength remained unchanged, even after 120 days, and exhibited excellent thermal stability at 65°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1245–1254, 1999  相似文献   

14.
Novel Y‐type polyester 4 containing 5‐methyl‐4‐{5‐(1,2,2‐tricyanovinyl)‐2‐thiazolylazo}resorcinoxy groups as nonlinear optical (NLO) chromophores, which are parts of the polymer backbone, was prepared, and its NLO properties were investigated. Polyester 4 is soluble in common organic solvents such as N,N‐dimethylformamide and dimethylsulfoxide. Polymer 4 shows a thermal stability up to 250 °C from thermogravimetric analysis with glass‐transition temperature obtained from differential scanning calorimetry of approximately 94 °C. The second harmonic generation (SHG) coefficient (d33) of poled polymer film at 1560‐nm fundamental wavelength is 8.12 × 10?9 esu. The dipole alignment exhibits a thermal stability even at 6 °C higher than glass‐transition temperature (Tg), and no significant SHG decay is observed below 100 °C due to the partial main‐chain character of polymer structure, which is acceptable for NLO device applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
A novel Y‐type poly[iminocarbonyloxyethyl‐5‐methyl‐4‐{2‐thiazolylazo‐4‐(1,2,2‐tricyanovinyl)}resorcinoxyethyloxycarbonylimino‐(3,3′‐dimethoxy‐4,4′‐biphenylene)] 4 containing 5‐methyl‐4‐{5‐(1,2,2‐tricyanovinyl)‐2‐thiazolylazo}resorcinoxy groups as nonlinear optical (NLO) chromophores, which constitute part of the polymer backbone, was prepared and characterized. Polyurethane 4 is soluble in common organic solvents such as acetone and N,N‐dimethylformamide. It showed a thermal stability up to 250 °C in thermogravimetric analysis thermogram and the glass‐transition temperature (Tg) obtained from differential scanning calorimetry thermogram was around 118 °C. The second harmonic generation coefficient (d33) of poled polymer films at 1560 nm fundamental wavelength was around 8.43 × 10?9 esu. The dipole alignment exhibited a thermal stability even at 12 °C higher than Tg, and there was no SHG decay below 130 °C due to the partial main‐chain character of the polymer structure, which is acceptable for NLO device applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1166–1172, 2010  相似文献   

16.
To investigate the dendritic structure effects on the electro‐optical (EO) coefficients and thermal stability of the nonlinear optical (NLO) active materials, a bifunctional compound, IDD (4‐isocyanato‐4′(3,3‐dimethyl‐ 2,4‐dioxo‐acetidino)‐diphenylmethane) was used as a building block to synthesize a series of novel NLO chromophore‐containing dendritic structures including Generation 0.5 (G0.5) to Generation 3 (G3). The glass transition temperatures (Tg) of G1–G3 dendrons were in the range of 76–116°C, whereas only the G0.5 dendron exhibited a melting temperature (Tm), 98°C. Moreover, a series of NLO‐active guest–host systems ranging from polyimide‐G0.5 (PI‐G0.5) to polyimide‐G3 (PI‐G3) were prepared by blending 20 wt% chromophore‐containing dendron with a high Tg polyimide. EO coefficients ranged from 6.1 to 12.9 pm/V. The r33/dye content ratio increased with increasing generation of dendron‐containing polyimide samples. Particularly, the improvement in r33/dye content ratio of PI‐G2.5 sample tripled as compared to that of the guest–host sample with Disperse Red 1. Excellent temporal stability of PI‐G0.5 and PI‐G1.5 at 80°C was obtained. Moreover, waveguide properties for NLO polymers containing higher generation dendrons (3.1–3.6 dB/cm at 830 nm) were also obtained. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Methyl 3,4‐di‐(2′‐hydroxyethoxy)benzylidenecyanoacetate ( 3 ) was prepared by hydrolysis of methyl 3,4‐di‐(2′‐vinyloxyethoxy)benzylidenecyanoacetate ( 2 ). Diol 3 was condensed with 2,4‐toluenediisocyanate, 3,3′‐dimethoxy‐4,4′‐biphenylenediisocyanate, and 1,6‐hexamethylenediisocyanate to yield polyurethanes 4 – 6 containing the nonlinear optical chromophore 3,4‐dioxybenzylidenecyanoacetate. The resulting polyurethanes 4 – 6 were soluble in common organic solvents such as acetone and dimethylformamide. Polymers 4 – 6 indicated thermal stability up to 300 °C in thermogravimetric thermograms with glass‐transition temperature values obtained from differential scanning calorimetric thermograms in the range of 78–102 °C. The second‐harmonic generation coefficients (d33) of the poled polymer films were around 6.9 × 10?9 esu. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1742–1748, 2002  相似文献   

18.
New polymers for second‐order nonlinear optical (NLO) applications were synthesized and characterized. They were distinguished by the presence of chromophore groups, with various molecular hyperpolarizability values, used as pendants on substantially rigid backbones. The polymers were prepared through the reaction of tolylene‐2,4‐diisocyanate, or a suitable alkyloxyphthaloyl dichloride, with the N,N‐diethanol‐4‐(phenyl) group azo‐linked to a nitrofluorenone, nitrostilbene, nitrooxadiazole, or nitrothiadiazole moiety. The polymers exhibited good thermal stability, high glass‐transition temperatures, and an absence of crystallinity. The second‐order NLO properties of thin, transparent poled films, prepared by spin coating and thermal corona poling, were investigated for some of the polymers. The second harmonic coefficients, ranging between 18 and 25 pm/V, depended more on the alignment of the chromophore groups along the direction of the poling field than on their molecular hyperpolarizability. The temporal stability of the NLO properties of the polymers was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3013–3022, 2004  相似文献   

19.
A push–pull chromophore has been synthesized, which is liquid at room temperature and can be crosslinked owing to the presence of two methacrylate moieties. Thin films of the chromophore have been prepared by spin coating, and they have been simultaneously crosslinked and poled under strong electric field. On the poled crosslinked films, the quadratic nonlinear optical (NLO) characterization was performed through nonresonant second harmonic generation measurements at 1368 nm as the fundamental wavelength, yielding a fairly good d33 value of 46 pm/V, with retention of 80% of that value after 2 months at 85 °C. Following the theoretical issue that the quadratic NLO and piezoelectric tensors of a material have the same symmetry properties, and exploiting the easy processing of the chromophore in the liquid phase, we have prepared poled crosslinked samples of the chromophore suitable for piezoelectric tests that were performed using a commercial piezoceramic sample as the reference. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

20.
We have prepared new polyesters containing quadratic, nonlinear optical (NLO) active chromophores covalently incorporated into the main chain. In these polymers, the sequence of the chromophore units along the main chain is rigorously head to tail. All the polyesters are processable, both in the melt and in solution. For one polyester, a full second‐order NLO characterization has been performed. An out‐of‐resonance d33 coefficient of 21 pm/V at 1368 nm has been measured. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2719–2725, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号