首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
At the start of our research program concerned with the elucidation of the crosslinking polymerization mechanism leading to interpenetrating polymer network (IPN) formation, in which IPNs consist of both polymethacrylates and polyurethane (PU) networks, this article deals with the polyaddition crosslinking reaction leading to PU network formation. Therefore, 2‐methacryloyloxyethyl isocyanate (MOI) was radically copolymerized with methyl methacrylate (MMA) in the presence of CBr4 as a chain‐transfer agent. The resulting poly(MMA‐co‐MOI)s, having pendant isocyanate (NCO) groups as novel multifunctional polyisocyanates, were used for polyaddition crosslinking reactions with ethylene glycol as a typical diol. The second‐order rate constants depended on both the functionality of poly(MMA‐co‐MOI) and the NCO group concentration. The actual gel points were compared with the theoretical ones calculated according to Macosko's equation; the deviation of the actual gel point from the theoretical value became more remarkable for a greater functionality of poly(MMA‐co‐MOI) and at a lower NCO group concentration or at a lower poly(MMA‐co‐MOI) concentration. These are discussed mechanistically, with consideration given to the significance of intramolecular cyclization and intramolecular crosslinking reactions leading to the shrinkage of the molecular size of the prepolymer, along with the data of the intrinsic viscosities of resulting prepolymers and the swelling ratios of resulting gels. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 606–615, 2003  相似文献   

2.
In the present work, sequential interpenetrating polymer networks (IPNs) based on silicone and poly(2‐methacryloyloxyethyl phosphorylcholine) (PMPC) were developed with improved protein resistance. The structure and morphology of the IPNs were characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The results showed that the IPNs exhibited heterogeneous morphology. The bulk properties such as water content, ion permeability, and mechanical strength of the IPNs were determined by gravimetric method, ionoflux measurement technique, and tensile tester, respectively. The surface characteristics of the IPNs were investigated by X‐ray photoelectron spectroscopy (XPS) and contact angle measurements. XPS analysis suggested that PMPC was present on the surface as well as in the bulk material. The IPNs possessed more hydrophilic surface than pristine silicone revealed by contact angle measurements. Bovine serum albumin (BSA) was used as a model protein to evaluate protein resistance by a bicinchoninic acid assay method. The result revealed that the protein adsorption on the IPNs was significantly reduced compared to pristine silicone. These results suggest that the IPNs based on silicone and PMPC may be developed as novel ophthalmic biomaterials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Polymerization of 2‐methacryloyloxyethyl phosphorylcholine (MPC) was kinetically investigated in ethanol using dimethyl 2,2′‐azobisisobutyrate (MAIB) as initiator. The overall activation energy of the homogeneous polymerization was calculated to be 71 kJ/mol. The polymerization rate (Rp) was expressed by Rp = k[MAIB]0.54±0.05 [MPC]1.8±0.1. The higher dependence of Rp on the monomer concentration comes from acceleration of propagation due to monomer aggregation and also from retardation of termination due to viscosity effect of the MPC monomer. Rate constants of propagation (kp) and termination (kt) of MPC were estimated by means of ESR to be kp = 180 L/mol · s and kt = 2.8 × 104 L/mol · s at 60 °C, respectively. Because of much slower termination, Rp of MPC in ethanol was found at 60 °C to be 8 times that of methyl methacrylate (MMA) in benzene, though the different solvents were used for MPC and MMA. Polymerization of MPC with MAIB in ethanol was accelerated by the presence of water and retarded by the presence of benzene or acetonitrile. Poly(MPC) showed a peculiar solubility behavior; although poly(MPC) was highly soluble in ethanol and in water, it was insoluble in aqueous ethanol of water content of 7.4–39.8 vol %. The radical copolymerization of MPC (M1) and styrene (St) (M2) in ethanol at 50 °C gave the following copolymerization parameters similar to those of the copolymerization of MMA and St; r1 = 0.39, r2 = 0.46, Q1 = 0.76, and e1 = +0.51. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 509–515, 2000  相似文献   

5.
Crosslinked poly(2‐hydroxyethyl methacrylate)‐based magnetic microspheres were prepared in a simple one‐step procedure by dispersion polymerization in the presence of several kinds of iron oxides. Cellulose acetate butyrate and dibenzoyl peroxide were used as steric stabilizer and polymerization initiator, respectively, and ethylene dimethacrylate was a crosslinking agent. The resulting product was characterized in terms of particle size, particle size distribution, iron(III) content, and magnetic properties. In the presence of needle‐like maghemite in the polymerization mixture and under suitable conditions, magnetic microspheres with relatively narrow size distribution were formed. An increase in the particle size and, at the same time, a decrease in molecular weight of uncrosslinked polymers resulted, as the continuous phase became richer in 2‐methylpropan‐1‐ol. Coercive force of needle‐like maghemite‐containing particles was higher than that of cubic magnetite‐loaded microspheres. Coercive force increased with the decreasing iron content in the particles. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1161–1171, 2000  相似文献   

6.
A poly(D,L ‐lactide)–bromine macroinitiator was synthesized for use in the preparation of a novel biocompatible polymer. This amphiphilic diblock copolymer consisted of biodegradable poly(D,L ‐lactide) and 2‐methacryloyloxyethyl phosphorylcholine and was formed by atom transfer radical polymerization. Polymeric nanoparticles were prepared by a dialysis process in a select solvent. The shape and structure of the polymeric nanoparticles were determined by 1H NMR, atomic force microscopy, and ζ‐potential measurements. The results of cytotoxicity tests showed the good cytocompatibility of the lipid‐like diblock copolymer poly(2‐methacryloyloxyethyl phosphorylcholine)‐block‐poly(D,L ‐lactide). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 688–698, 2007  相似文献   

7.
Poly(2‐hydroxyethyl methacrylate‐coN,O‐dimethacryloylhydroxylamine) particles were prepared by dispersion polymerization in toluene/2‐methylpropan‐1‐ol medium using cellulose acetate butyrate and dibenzoyl peroxide (BPO) as a steric stabilizer and initiator, respectively. The particle size was reduced with decreasing solvency of the reaction medium (more nuclei were generated) because the critical chain length of the precipitated oligomers decreased with an increasing toluene content, which is a poorer solvent for the polymer than 2‐methylpropan‐1‐ol. There is an optimum initiator concentration (2 wt % BPO relative to monomers) for producing low‐polydispersity particles under given conditions. Additionally, discrete spherical particles were obtained at a low monomer concentration and/or higher polymerization temperature. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1625–1632, 2002  相似文献   

8.
The polyzwitterionic brushes comprised of poly(2‐methacryloyloxyethyl phosphorylcholine) (pMPC) segments, which are used for surface modification of polymers and biocompatible coatings, were investigated. In this work, reverse surface‐initiated atom transfer radical polymerization (RATRP) of zwitterionic 2‐methacryloyloxyethyl phosphorylcholine (MPC) is employed to tailor the functionality of graphene oxide (GeneO) in a well‐controlled manner and produce a series of well‐defined hemocompatible hybrids (termed as GeneO‐g‐pMPC). The complexes were characterized by FT‐IR, XRD, and Raman. Results show that MPC has been coordinated on the graphene oxide sheet. Thermal stability of the nanocomposites in comparison with the neat copolymer is revealed by thermogravimetric analysis and differential thermal analysis. Scanning electron microscopy and transmission electron microscope images of the nanoconposite displays pMPC chains were capable of existing on GeneO sheet by RATRP. The biocompatibility properties were measured by plasma recalcification profile tests, hemolysis test, and MTT assays, respectively. The results confirm that the pMPC grafting can substantially enhance the hemocompatibility of the GeneO particles, and the GeneO‐g‐pMPC hybrids can be used as biomaterials without causing any hemolysis. With the versatility of RATRP and the excellent hemocompatibility of zwitterionic polymer chains, the GeneO‐g‐pMPC nanoparticles with desirable blood properties can be readily tailored to cater to various biomedical applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A well‐defined amphiphilic coil‐rod block copolymer, poly(2‐vinyl pyridine)‐b‐poly(n‐hexyl isocyanate) (P2VP‐b‐PHIC), was synthesized with quantitative yields by anionic polymerization. A low reactive one‐directional initiator, potassium diphenyl methane (DPM‐K), was very effective in polymerizing 2‐vinyl pyridine (2VP) without side reactions, leading to perfect control over molecular weight and molecular weight distribution over a broad range of initiator and monomer concentration. Copolymerization of 2VP with n‐hexyl isocyanate (HIC) was carried out in the presence of sodium tetraphenyl borate (NaBPh4) to prevent backbiting reactions during isocyanate polymerization. Terminating the living end with a suitable end‐capping agent resulted in a P2VP‐b‐PHIC coil‐rod block copolymer with controlled molecular weight and narrow molecular weight distribution. Cast film from a chloroform solution of P2VP‐b‐PHIC displayed microphase separation, characteristic of coil‐rod block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 607–615, 2005  相似文献   

10.
A new graft copolymer, poly(2‐hydroxyethyl methacrylate‐co‐styrene) ‐graft‐poly(?‐caprolactone), was prepared by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with coordination‐insertion ring‐opening polymerization (ROP). The copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 60 °C in the presence of 2‐phenylprop‐2‐yl dithiobenzoate (PPDTB) using AIBN as initiator. The molecular weight of poly (2‐hydroxyethyl methacrylate‐co‐styrene) [poly(HEMA‐co‐St)] increased with the monomer conversion, and the molecular weight distribution was in the range of 1.09 ~ 1.39. The ring‐opening polymerization (ROP) of ?‐caprolactone was then initiated by the hydroxyl groups of the poly(HEMA‐co‐St) precursors in the presence of stannous octoate (Sn(Oct)2). GPC and 1H‐NMR data demonstrated the polymerization courses are under control, and nearly all hydroxyl groups took part in the initiation. The efficiency of grafting was very high. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5523–5529, 2004  相似文献   

11.
The matrix formula developed in the context of hetrochain theory, M?w = M?wp + WF ( I ? M )?1 S , was applied to describe the molecular weight development during free‐radical homopolymerization. All of the required probabilistic parameters are expressed in terms of the kinetic‐rate constants and various concentrations. In free‐radical polymerization, the primary chains are formed consecutively, and the number of heterochain types, N, is extrapolated to infinity. Practically, such extrapolation can be conducted on the basis of the calculated values for only three different N values with sufficient accuracy. This matrix formula is valid regardless of the chemical and reactor systems used, as long as the primary chain‐connection statistics is considered Markovian. The gel point can be determined simply by solving an equation det( I ? M ) = 0. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2791–2800, 2004  相似文献   

12.
This study was related to the investigation of the chemical fixation of carbon dioxide to a copolymer bearing epoxide and the application of the cyclic carbonate group containing copolymer‐to‐polymer blends. In the synthesis of poly[(2‐oxo‐1,3‐dioxolane‐4‐yl) methyl methacrylate‐co‐ethyl acrylate] [poly(DOMA‐co‐EA)] from poly(glycidyl methacrylate‐co‐ethyl acrylate) [poly(GMA‐co‐EA)] and CO2, quaternary ammonium salts showed good catalytic activity. The films of poly(DOMA‐co‐EA) with poly(methyl methacrylate) (PMMA) or poly(vinyl chloride) (PVC) blends were cast from N,N′‐dimethylformamide solution. The miscibility of the blends of poly(DOMA‐co‐EA) with PMMA or PVC have been investigated both by DSC and visual inspection of the blends. The optical clarity test and DSC analysis showed that poly(DOMA‐co‐EA) containing blends were miscible over the whole composition range. The miscibility behaviors were discussed in terms of Fourier transform infrared spectra and interaction parameters based on the binary interaction model. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1472–1480, 2001  相似文献   

13.
2‐Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was grafted from silicon wafer surfaces at room temperature by combining self‐assembly of initiator and surface‐initiated atom transfer radical polymerization. Two methods were used to control the grafting process. One was to add free initiator to the reaction system; the other was to add excess deactivator. The grafting densities up to 0.3 chains/nm2 were obtained. The surface thickness increased linearly with MPC conversion. The thickness depended on catalyst and monomer concentrations, as well as activator/deactivator ratio. Poly(MPC) layers of >100 nm thick were obtained by optimizing the polymerization conditions. A second block of either poly(MPC) or poly[2‐(dimethylamino)ethyl methacrylate] was also grown from the grafted poly(MPC), demonstrating the system livingness. X‐ray photoelectron spectroscopy was used to examine the surface chemical compositions showed good agreement with the theoretical values. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2931–2942, 2004  相似文献   

14.
The spontaneous reaction of unsaturated double bonds induced by the fragmentation of ether bonds is presented as a method to obtain a crosslinked polymer material. Poly(1,5‐dioxepan‐2‐one) (PDXO) was synthesized using three different polymerization techniques to investigate the influence of the synthesis conditions on the ether bond fragmentation. It was found that thermal fragmentation of the ether bonds in the polymer main chain occurred when the synthesis temperature was 140 °C or higher. The double bonds produced reacted spontaneously to form crosslinks between the polymer chains. The formation of a network structure was confirmed by Fourier transform infrared spectrometry and differential scanning calorimetry. In addition, the low molar mass species released during hydrolysis of the DXO polymers were monitored by ESI‐MS and MALDI‐TOF‐MS. Ether bond fragmentation also occurred during the ionization in the electrospray instrument, but predominantly in the lower mass region. No fragmentation took place during MALDI ionization, but it was possible to detect water‐soluble DXO oligomers with a molar mass up to approximately 5000 g/mol. The results show that ether bond fragmentation can be used to form a network structure of PDXO. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7258–7267, 2008  相似文献   

15.
Thin films were fabricated layer‐by‐layer (LbL) via ionic bonds formed between a cationic ionomer and an anionic ionomer, which were produced via proton transfer from poly(styrene‐co‐styrenesulfonic acid) to poly(methyl methacrylate‐co‐4‐vinylpyridine) in an organic solvent, tetrahydrofuran. Ionic contents of the ionomers were very low down to 5.6 mol %, much lower than usual polyelectrolytes. The build up of the LbL films was demonstrated by UV/vis spectroscopy: the absorbance of the phenyl rings in styrene residues increased with the number of depositions (thus the number of layers). Transmission electron microscopy observation of strained thin films showed unique deformation mode, involving many bands that developed both in the parallel and perpendicular directions to the stress axis. This is quite different from the deformation modes seen for ionomer blend films and for coextruded polystyrene/poly(methyl methacrylate) multilayer tapes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 101–105, 2012  相似文献   

16.
Statistical copolymers of methyl methacrylate (MMA) with 2‐methacryloyloxyethyl ferrocenecarboxylate (MAEFC) were prepared by free radical polymerization. The reactivity ratios were estimated using the Fineman‐Ross, inverted Fineman‐Ross, Kelen‐Tüdos, and extended Kelen‐Tüdos graphical methods. Structural parameters of the copolymers were obtained by calculating the dyad monomer sequence fractions and the mean sequence length. The glass‐transition temperature (Tg) values of the copolymers were measured and examined by means of several theoretical equations, allowing the prediction of these Tg values. The thermal degradation behavior of the copolymers was also studied and compared with the respective homopolymers. Cyclic voltammetry was employed to study the electrochemical properties of the copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
The new monomer N′‐(β‐methacryloyloxyethyl)‐2‐pyrimidyl‐(p‐benzyloxy‐ carbonyl)aminobenzenesulfonamide (MPBAS) (M1) is synthesized using sulfadiazine as parent compound. It could be homopolymerized and copolymerized with N‐phenyl maleimide (NPMI) (M2) by radical mechanism using AIBN as initiator at 60 °C in dimethylformamide. The new monomer MPBAS and polymers were identified by IR, element analysis and 1H NMR in detail. The monomer reactivity ratios in copolymerization were determined by YBR method, and r1 (MPBAS) = 2.39 ± 0.05, r2 (NPMI) = 0.33 ± 0.02. In the presence of ammonium formate, benzyloxycarbonyl groups could be broken fluently from MPBAS segments of copolymer by catalytic transfer hydrogenation, and the copolymer with sulfadiazine side groups are recovered. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2548–2554, 2000  相似文献   

18.
Dual temperature‐ and pH‐sensitive hydrogels composed of N‐isopropylacrylamide (NIPAM) and 2‐acrylamido‐2‐methyl‐propanosulfonic acid (AMPS) were prepared by free‐radical crosslinking copolymerization in aqueous solution at 22 °C. The mole percent of AMPS in the comonomer feed was varied between 0.0 and 7.5, while the crosslinker ratio was fixed at 5.0/100. The effect of AMPS content on thermo‐ and pH‐ induced phase transitions as well as equilibrium swelling/deswelling, interior morphology and network structure was investigated. The volume phase transition temperature (VPT‐T) was determined by both swelling/deswelling measurements and differential scanning calorimetry (DSC) technique. In addition, the volume phase transition pH (VPT‐pH) was detected from the derivative of the curves of the swelling ratio (dQv/dpH) versus pH. The polymer‐solvent interaction parameter (χ) and the average molecular mass between crosslinks ( ) of hydrogels were calculated from swelling ratios in buffer solutions at various pHs. The enthalpy (ΔH) and entropy (ΔS) changes appearing in the χ parameter of hydrogels were also determined by using the modified Flory–Rehner equation. The negative values for ΔH and ΔS indicated that the hydrogels had a negative temperature‐sensitive property in water, that is, swelling at a lower temperature and shrinking at a higher temperature. It was observed that the experimental swelling data of hydrogels at different temperature agreed with the modified Flory‐Rehner approach based on the affine network model. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1713–1724, 2008  相似文献   

19.
We investigated the chemical fixation of carbon dioxide (CO 2) to a copolymer bearing epoxide and the application of the cyclic carbonate group containing copolymer to polymer blends. In the synthesis of poly[(2‐oxo‐1,3‐dioxolane‐4‐yl)methyl methacrylate‐co‐styrene] [poly(DOMA‐co‐St)] from the addition of CO 2 to poly(glycidyl methacrylate‐co‐styrene) [poly(GMA‐co‐St)], quaternary ammonium salts showed good catalytic activity at mild reaction conditions. The CO 2 addition reaction followed pseudo first‐order kinetics with the concentration of poly(GMA‐co‐St). In order to expand the applications of the CO 2 fixed copolymer, polymer blends of this copolymer with poly(methyl methacrylate) (PMMA) or poly(vinyl chloride) (PVC) were cast from N,N′‐dimethylformamide (DMF) solution. Miscibility of blends of poly(DOMA‐co‐St) with PMMA or PVC have been investigated both by differential scanning calorimetry (DSC) and visual inspection of the blends, and the blends were miscible over the whole composition ranges. The miscibility behaviors were also discussed in terms of FT‐IR spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
To develop new hemopurification systems based on cellulose membrane, we synthesized a graft copolymer of cellulose with poly(2‐methacryloyloxyethyl phosphorylcholine) (MPC) by a metal‐catalyzed atom transfer radical polymerization process in homogeneous media. First, cellulose was dissolved in a DMAc/LiCl solution system, and it reacted with 2‐bromoisobutyloyl bromide to produce macroinitiator (cell‐BiB). Then, MPC was polymerized to the cellulose backbone in a homogeneous DMSO/methanol mixture solution in the presence of cell‐BiB. Characterization with FT‐IR, NMR, and GPC measurements showed that there obtained a graft copolymer of cellulose backbone and poly(MPC) side chains (cell‐PMPC) with well‐defined structure, indicating a controlled/“living” radical polymerization. The proteins adsorption studies showed that cellulose membranes modified by the as‐prepared cell‐PMPC owns good protein adsorption resistance. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3306–3313, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号