首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five types of ethylene/α‐alkene model copolymers containing 21‐carbon alkyl branches have been synthesized via acyclic diene metathesis (ADMET) copolymerization. The overall branch content is controlled by varying the feedstock ratio of the long‐chain branched symmetrical α, ω‐diene and 1,9‐decadiene. Well‐defined melting transitions are present at low branch incorporation, followed by the broadening of the endotherms as the branch contents increase. However, instead of making the material amorphous, further increasing of the branch contents leads to the retrieval of the semi‐crystalline material creating a new crystalline domain, branches that co‐crystallize. Detailed IR spectra analyses suggest a crystal morphology transformation from orthorhombic to hexagonal phase as the branch content increases in these polymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018  相似文献   

2.
The objective of the present study was to determine the best molecular balance between the two hydrogenated polybutadiene (HPB) and polymethylmethacrylate (PMMA) blocks that promotes an HPB‐b‐PMMA diblock copolymer with efficient compatibilization activity in a low‐density polyethylene (LDPE)/PMMA immiscible blend. The model blend selected, LDPE/PMMA, is “more immiscible” than the LDPE/polystyrene pair largely reported in open literature. The blends having a composition of 80LDPE/20PMMA exhibit a droplet‐in‐matrix phase morphology whereas in 20LDPE/80PMMA a co‐continuous phase morphology was developed. In the droplet‐in‐matrix phase morphology, the emulsifying efficiency of the copolymer was evaluated based on the maximum reduction of the PMMA droplet size it is able to promote. Whereas, in the co‐continuous phase morphology, the copolymer was evaluated based on its ability to stabilize the maximum phase co‐continuity. The sequences of the best emulsifying copolymer revealed are not symmetrical. An HPB‐b‐PMMA where the ratio of molar mass of the blocks, HPB/ PMMA, is within 1.8–1.95 exhibits a much better interfacial activity in LDPE/PMMA blends than a copolymer of much lower ratio (longer PMMA block). This is ascribed to the much higher interactions (cohesive energy density) encountered in PMMA (PMMA of the copolymer and PMMA phase of the blend) compared with the LDPE side (HPB of the copolymer and LDPE phase of the blend). © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 837–848, 2005  相似文献   

3.
The application of the WCl6–e?–Al–CH2Cl2 system to acyclic diene metathesis polymerization of 1,9‐decadiene is reported. The polyoctenamer formed is of a weight‐average molecular weight of 9000 with a polydispersity of 1.92. IR and NMR spectral analyses indicate the retention of the double bonds in the polymer structure with high trans content as expected from a step condensation reaction. This relatively stable catalytic system, however, also activates the competing vinyl addition reactions while being inactive in ring‐closure metathesis reactions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Four nonconjugated diene comonomers 1,9‐decadiene (19DD), 6‐ethylundeca‐1,10‐diene (EUD), 1,5‐cyclooctadiene (COD) and cinene (1‐methyl‐4‐(prop‐1‐en‐2‐yl) cyclohex‐1‐ene) (CE) were used in copolymerization with ethylene catalyzed by α‐diimine Ni(II) complex ([2,6‐(iPr)2C6H3N = C(CH3)?(CH3)C = N2,6‐(iPr)2C6H3)]NiBr2 ( 1 )) activated by Et2AlCl. These dienes showed quite distinct copolymerization behaviors. Ethylene‐19DD copolymerization formed highly branched polyethylene with cyclic units and pendent vinyls, and a large part of crosslinked polymer when the 19DD concentration was relatively high. Using EUD as comonomer lead to evidently reduced gel formation and increased content of pendent vinyl. COD can be incorporated in the copolymer with evidently lower catalyst efficiency than the ethylene homopolymerization, and CE behaves like an inert compound as it was not incorporated in the copolymer. Homopolymerization of 19DD with the same catalyst produced polymer containing both cyclic units and pendent vinyls. The cyclic units were formed by cyclopolymerization of the inserted 19DD after several steps of chain walking. Crosslinking through the pendent vinyl took place when the initial 19DD concentration was relatively high, forming large amount of gel in the product. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1900–1909  相似文献   

5.
The monomer N‐vinylpyrrolidone (NVP) undergoes side reactions in the presence of R group functional xanthates and impurities. The fate of the monomer NVP and a selection of six O‐ethyl xanthates during xanthate‐mediated polymerization were studied via NMR spectroscopy. A high number of by‐products were identified. Significant side reactions affecting NVP include the formation of an unsaturated dimer and hydration products in bulk or in solution in C6D6. In addition, the xanthate adjacent to a NVP unit was found to undergo elimination at moderate temperature (60–70 °C), resulting in unsaturated species and the formation of new xanthate species. The presence of the chlorinated compound α‐chlorophenyl acetic acid, ethyl ester, a precursor in the synthesis of the xanthate S‐(2‐ethyl phenylacetate) O‐ethyl xanthate, resulted in a dramatic increase in the rate of side reactions such as unsaturated dimer formation and a high ratio of unsaturated chain ends. The conditions for the occurrence of such side reactions are discussed in this article, with relevance to increasing the control over the polymerization kinetics, endgroup functionality, and control over the molar mass distribution. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6575–6593, 2008  相似文献   

6.
Stable monodisperse poly(vinyl acetate) (PVAc) submicronic latex particles were synthesized by ab initio batch emulsion polymerization using a dextran derivative from renewable resource as an efficient steric stabilizer. The dextranend‐functionalized by a xanthate moiety was synthesized by Huisgen's 1,3‐dipolar cycloaddition (click chemistry). It was applied as a macromolecular RAFT (reversible addition fragmentation chain transfer) agent in surfactant‐free emulsion polymerization of vinyl acetate to form in situ an amphiphilic block copolymer able to efficiently stabilize the latex particles. The method afforded the preparation of high solids content (27%) latices coated by dextran. Both the kinetic study and the molar mass analyses confirmed the involvement of the dithiocarbonate group in the emulsion polymerization process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2845–2857, 2008  相似文献   

7.
Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI–DBSA). PANI–DBSA, low‐density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin‐rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI–DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI–DBSA/LDPE, and this was attributed to the PANI–DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high‐resolution optical microscopy indicated that PANI–DBSA formed a conducting network at a high concentration of PANI–DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3750–3758, 2004  相似文献   

8.
The stress–strain diagrams and ultimate tensile properties of uncompatibilized and compatibilized hydrogenated polybutadiene‐block‐poly(methyl methacrylate) (HPB‐b‐PMMA) blends with 20 wt % poly(methyl methacrylate) (PMMA) droplets dispersed in a low‐density polyethylene (LDPE) matrix were studied. The HPB‐b‐PMMA pure diblock copolymer was prepared via controlled living anionic polymerization. Four copolymers, in terms of the molecular weights of the hydrogenated polybutadiene (HPB) and PMMA sequences (22,000–12,000, 63,300–31,700, 49,500–53,500, and 27,700–67,800), were used. We demonstrated with the stress–strain diagrams, in combination with scanning electron microscopy observations of deformed specimens, that the interfacial adhesion had a predominant role in determining the mechanism and extent of blend deformation. The debonding of PMMA particles from the LDPE matrix was clearly observed in the compatibilized blends in which the copolymer was not efficiently located at the interface. The best HPB‐b‐PMMA copolymer, resulting in the maximum improvement of the tensile properties of the compatibilized blend, had a PMMA sequence that was approximately half that of the HPB block. Because of the much higher interactions encountered in the PMMA phase in comparison with those in HPB (LDPE), a shorter sequence of PMMA (with respect to HPB but longer than the critical molecular weight for entanglement) was sufficient to favor a quantitative location of the copolymer at the LDPE/PMMA interface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 22–34, 2005  相似文献   

9.
The effect of the triblock copolymer poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) on the formation of the space charge of immiscible low‐density polyethylene (LDPE)/polystyrene (PS) blends was investigated. Blends of 70/30 (wt %) LDPE/PS were prepared through melt blending in an internal mixer at a blend temperature of 220 °C. The amount of charge that accumulated in the 70% LDPE/30% PS blends decreased when the SEBS content increased up to 10 wt %. For compatibilized and uncompatibilized blends, no significant change in the degree of crystallinity of LDPE in the blends was observed, and so the effect of crystallization on the space charge distribution could be excluded. Morphological observations showed that the addition of SEBS resulted in a domain size reduction of the dispersed PS phase and better interfacial adhesion between the LDPE and PS phases. The location of SEBS at a domain interface enabled charges to migrate from one phase to the other via the domain interface and, therefore, resulted in a significant decrease in the amount of space charge for the LDPE/PS blends with SEBS. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2813–2820, 2004  相似文献   

10.
Ethene was copolymerized (1) with 1,5‐hexadiene with rac‐ethylenebis(indenyl)zirconium dichloride/methylaluminoxane (MAO) used as a catalyst and (2) with 1,7‐octadiene with bis(n‐butylcyclopentadienyl)zirconium dichloride/MAO and rac‐ethylenebis(indenyl)hafnium dichloride (Et[Ind]2HfCl2)/MAO used as catalysts at 80 °C in toluene. The copolymer microstructure and the influence of diene incorporation on the rheological properties were examined. Ethene and 1,5‐hexadiene formed a copolymer in which a major fraction of the 1,5‐hexadiene was incorporated into rings and a small fraction formed 1‐butenyl branches. The copolymerization of ethene with 1,7‐octadiene resulted in a higher selectivity toward branch formation. Some of the branches formed long‐chain‐branching (LCB) structures. The ring formation selectivity increased with decreasing ethene concentration in the polymerization reactor. Melt rheological properties of the diene copolymers resembled those of metallocene‐catalyzed LCB homopolyethenes and depended on the vinyl content, the catalyst, and the polymerization conditions. At high diene contents, all three catalysts produced crosslinked polyethene. This was especially pronounced with Et[Ind]2HfCl2, where only 0.2 mol % 1,7‐octadiene in the copolymer was required to achieve significantly modified rheological properties. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3805–3817, 2001  相似文献   

11.
A well‐defined amphiphilic copolymer brush with poly(ethylene oxide) as the main chain and polystyrene as the side chain was successfully prepared by a combination of anionic polymerization and atom transfer radical polymerization (ATRP). The glycidol was first protected by ethyl vinyl ether to form 2,3‐epoxypropyl‐1‐ethoxyethyl ether and then copolymerized with ethylene oxide by the initiation of a mixture of diphenylmethylpotassium and triethylene glycol to give the well‐defined polymer poly(ethylene oxide‐co‐2,3‐epoxypropyl‐1‐ethoxyethyl ether); the latter was hydrolyzed under acidic conditions, and then the recovered copolymer of ethylene oxide and glycidol {poly(ethylene oxide‐co‐glycidol) [poly(EO‐co‐Gly)]} with multiple pending hydroxymethyl groups was esterified with 2‐bromoisobutyryl bromide to produce the macro‐ATRP initiator [poly(EO‐co‐Gly)(ATRP). The latter was used to initiate the polymerization of styrene to form the amphiphilic copolymer brushes. The object products and intermediates were characterized with 1H NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, Fourier transform infrared, and size exclusion chromatography in detail. In all cases, the molecular weight distribution of the copolymer brushes was rather narrow (weight‐average molecular weight/number‐average molecular weight < 1.2), and the linear dependence of ln[M0]/[M] (where [M0] is the initial monomer concentration and [M] is the monomer concentration at a certain time) on time demonstrated that the styrene polymerization was well controlled. This method has universal significance for the preparation of copolymer brushes with hydrophilic poly(ethylene oxide) as the main chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4361–4371, 2006  相似文献   

12.
A new range of selenium‐based reversible addition‐fragmentation chain‐transfer (RAFT) agents is described and tested in the polymerization of styrene, acrylates, vinyl esters, and N‐vinylcaprolactam. The synthesized N,N‐dimethyldiselenocarbamates were poor control agents for styrene polymerization, whereas polyacrylates of controlled molar masses and bearing a diselenocarbamate terminal group could be synthesized. The polymerization of vinyl acetate and vinyl pivalate proceeded in a controlled manner as confirmed by size‐exclusion chromatography, matrix‐assisted laser desorption ionization‐time‐of‐flight mass spectrometry, and 77Se NMR analyses. The capability of these RAFT agents to control the polymerization of both more‐activated monomers and less‐activated monomers was exemplified through the synthesis of a poly(t‐butyl acrylate)‐b‐poly(vinyl acetate) diblock copolymer. Considering the very broad range of carbamate groups which can be envisioned, this finding opens numerous perspectives for diselenocarbamate‐mediated RAFT polymerization with its specificities yet to be explored. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4361–4368  相似文献   

13.
Precise graft copolymer architectures were achieved by combining the macromonomer technique with the acyclic diene metathesis (ADMET) reaction. These well‐defined copolymer structures were the result of proper monomer design before metathesis polymerization. Features such as length of the graft, nature, and concentration of the graft site along the backbone were manipulated via the combination of living atom transfer radical polymerization methods with ADMET chemistry. Furthermore, the physical behavior of these materials was altered such that they presented dissimilar thermal properties of either the homopolymers or random copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2816–2827, 2003  相似文献   

14.
A series of ethylene–vinyl chloride‐like copolymers were prepared by ring‐opening metathesis polymerization (ROMP). The route to these materials included the bulk polymerization of 5‐chlorocyclooctene and 5,6‐dichlorocyclooctene with the first‐generation Grubbs' catalyst, followed by diimide hydrogenation of the resulting unsaturated polymers. In addition, the amount of chlorine in these materials was varied by the copolymerization of 5‐chlorocyclooctene with cyclooctene. These materials were fully characterized by NMR (1H and 13C), gel permeation chromatography, and Fourier transform infrared spectroscopy. Finally, hydroboration was carried out on the ROMP product of 5‐chlorocyclooctene to yield a polymer, which was effectively a vinyl alcohol–vinyl chloride–ethylene terpolymer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2107–2116, 2003  相似文献   

15.
Model alkali‐soluble rheology modifiers of different molar masses were synthesized by the reversible addition–fragmentation chain‐transfer polymerization of methyl methacrylate, methacrylic acid, and two different associative macromonomers. The polymerization kinetics showed good living character including well‐controlled molar mass, molar mass linearly increasing with conversion, and the ability to chain‐extend by forming an AB block copolymer. The steady‐shear and dynamic properties of a core‐shell emulsion, thickened with the different model alkali‐soluble rheology modifiers, were measured at constant pH and temperature. The steady‐shear data for latex solutions with conventional rheology modifiers exhibited the expected thickening, whereas the associative rheology modifiers showed contrasting rheology behavior. The dynamic measurements revealed that the latex solutions thickened with the conventional rheology modifiers exhibit solid‐like (dominant G′) behavior as compared with the associative rheology modifiers that give the latex solution a liquid‐like (dominant G″) character. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 223–235, 2003  相似文献   

16.
A new monomer derivative of N‐vinyl‐2‐caprolactam (VCL), namely 3‐(tert‐butoxycarbonylmethyl)‐N‐vinyl‐2‐caprolactam (TBMVCL), was synthesized via nucleophilic substitution at the α‐carbon to the lactam carbonyl group. The monomer was copolymerized radically with VCL and the copolymer compositions were controlled through varying the molar feeding percentages of TBMVCL. The resulting copolymers exhibited temperature‐responsive properties in water, with cloud points decreasing from 33 °C to 13 °C when the TBMVCL composition increased from 2.2 mol % to 18.6 mol %. Removal of the tert‐butyl protecting groups via acid hydrolysis exposed the carboxyl groups, which conferred pH sensitivity to the thermoresponsive properties of the resulting deprotected copolymers. The cloud point was found to increase with the increase of solution pH from 2.0 to 7.4, due to the ionization of the carboxyl groups. The influence of pH was most drastic for the 18.6 mol % copolymer composition. Furthermore, the phase transition temperature of the deprotected copolymers was found to be dependent on the polymer solution concentration, exemplifying classical Flory–Huggins miscibility behavior. Comparison of responsiveness was also made with another type of carboxyl functionalized poly(N‐vinyl‐2‐caprolactam) copolymer reported in our prior study, to examine the influence of the chemical structure of the carboxyl substitution group. Finally, the deprotected copolymer was demonstrated to be biocompatible using a fibroblast cell culture. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 112–120  相似文献   

17.
A model polyethylene‐poly(L ‐lactide) diblock copolymer (PE‐b‐PLLA) was synthesized using hydroxyl‐terminated PE (PE‐OH) as a macroinitiator for the ring‐opening polymerization of L ‐lactide. Binary blends, which contained poly(L ‐lactide) (PLLA) and very low‐density polyethylene (LDPE), and ternary blends, which contained PLLA, LDPE, and PE‐b‐PLLA, were prepared by solution blending followed by precipitation and compression molding. Particle size analysis and scanning electron microscopy results showed that the particle size and distribution of the LDPE dispersed in the PLLA matrix was sharply decreased upon the addition of PE‐b‐PLLA. The tensile and Izod impact testing results on the ternary blends showed significantly improved toughness as compared to the PLLA homopolymer or the corresponding PLLA/LDPE binary blends. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2755–2766, 2001  相似文献   

18.
Ethylene‐propylene‐diene terpolymers (EPDM) are generally amorphous and, therefore, do not crystallize from solution. Consequently, fractionation techniques based on crystallization, such as crystallization analysis fractionation or temperature rising elution fractionation, cannot be used to analyze their chemical composition distribution. Moreover, no suitable chromatographic system was known, which would enable to separate them according to their chemical composition. In this study, two different sorbent/solvent systems are tested with regard to the capability to separate EPDM‐terpolymers and ethylene‐propylene (EP)‐copolymers according to chemical composition. While porous graphite/1‐decanol system is selective towards ethylene and ethylidene‐2‐norbornene, carbon coated zirconia/2‐ethyl‐1‐hexanol is preferentially selective towards ethylene. Consequently, the earlier system enables to separate both EP copolymers and EPDM according to the chemical composition and the latter mainly according to the ethylene content. The results prove that the chromatographic separation in both sorbent/solvent systems is not influenced by molar mass of a sample or by its long chain branching. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Eight‐arm poly(ethylene oxide) (PEO) stars were prepared by the core‐first method with a newly designed octahydroxylated precursor. This compound was readily obtained in two steps from commercially available tert‐butylcalix[8]arene. The choice of the proper solvent of polymerization proved crucial to obtain PEO star materials with a narrow distribution of molar masses. For instance, the use of dimethyl sulfoxide (DMSO) resulted in PEO samples of rather large polydispersities (PDI: 1.3–1.5). In this solvent, the calixarene‐based precursor was only sparingly soluble, and an attempt to metalate its eight hydroxyl groups produced insoluble alkoxides. In addition, the presence of a side population of low‐molar‐mass species attributable to linear chains was detected because of the chain transfer of propagating alkoxides to DMSO. Polymerization experiments carried out in tetrahydrofuran (THF) as solvent afforded better control over the molar masses and PDIs. This was related to the better solubility of the octafunctional calixarene‐based precursor in THF and to the small tendency of the alkoxides formed to aggregate in that solvent. Under such conditions, all eight hydroxyl functions efficiently initiated the polymerization of ethylene oxide. In this way, well‐defined PEO stars (PDI < 1.2) of tunable molar masses incorporating a calixarene‐based core could be obtained, as it was supported by the characterization of the samples by size exclusion chromatography, NMR, and viscometry. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1669–1676, 2003  相似文献   

20.
The complexation between narrow molecular weight distribution poly(2‐vinylpyridine) (P2VP) and polystyrene (suPS) or polyisoprene (suPI) end‐functionalized with one sulfonic acid group was examined in tetrahydrofuran dilute solutions by a combination of static and dynamic laser light scattering. Both apparent weight‐average molecular weight (Mw,app) and hydrodynamic radius (Rh) of the complexes exhibited a maximum at a certain molar ratio of suPS chains to P2VP monomeric units. This indicated that the P2VP backbone may be saturated by the grafted end‐functionalized chains because of repulsion between the grafted chains. By changing the molar mass of P2VP from 100,000 to 30,000 g/mol, the values of Mw,app and Rh decreased. When suPI was used instead of suPS, similar trends were observed. In the latter case, it was possible to prepare block copolymer‐like micelles by transferring the P2VP/suPI blend solutions in decane, which is a selective solvent for PI. The non‐covalent‐bonded polymeric micelle characteristics were investigated as a function of sulfonic acid/2‐vinylpyridine units ratio as well as temperature. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2454–2461, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号