首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of new poly(p‐phenylene vinylene) derivatives with different dendritic pendants—poly{2‐[3′,5′‐bis(2″‐ethylhexyloxy)benzyloxy]‐1,4‐phenylenevinylene} (BE–PPV), poly{2‐[3′,5′‐bis(3″,7″‐dimethyl)octyloxy]‐1,4‐phenylenevinylene} (BD–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBE–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBD–PPV), and poly[(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)‐co‐(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)] (BBE‐co‐BBD–PPV; 1:1)—were successfully synthesized according to the Gilch route. The structures and properties of the monomers and the resulting conjugated polymers were characterized with 1H and 13C NMR, elemental analysis, gel permeation chromatography, thermogravimetric analysis, ultraviolet–visible absorption spectroscopy, photoluminescence, and electroluminescence spectroscopy. The obtained polymers possessed excellent solubility in common solvents and good thermal stability, with a 5% weight loss temperature of more than 328 °C. The weight‐average molecular weights and polydispersity indices of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were in the range of 1.33–2.28 × 105 and 1.35–1.53, respectively. Double‐layer light‐emitting diodes (LEDs) with the configuration of indium tin oxide/polymer/tris(8‐hydroxyquinoline) aluminum/Mg:Ag/Ag devices were fabricated, and they emitted green‐yellow light. The turn‐on voltages of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were approximately 5.6, 5.9, 5.5, 5.2, and 4.8 V, respectively. The LED devices of BE–PPV and BD–PPV possessed the highest electroluminescent performance; they exhibited maximum luminance with about 860 cd/m2 at 12.8 V and 651 cd/m2 at 13 V, respectively. The maximum luminescence efficiency of BE–PPV and BD–PPV was in the range of 0.37–0.40 cd/A. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3126–3140, 2005  相似文献   

2.
We synthesized two fluorene‐based copolymers poly[(2,5‐bis(4‐hexylthiophen‐2‐yl)thiazolo[5,4‐day]thiazole‐5,5′‐diyl)‐alt‐(9,9′‐dioctylfluorene‐2,7‐diyl)] ( PF‐TTZT), and poly[(5,5′‐bis(4‐hexylthiophen‐2‐yl)‐2,2′‐bithiazole‐5,5′‐diyl)‐alt‐(9,9′‐dioctylfluorene‐2,7‐diyl)] (PF‐TBTT), which contain the electron‐withdrawing moieties, thiazolothiazole, and bithiazole, respectively. Through electrochemical studies, we found that these two polymers exhibit stable reversible oxidation and reduction behaviors. Moreover, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of PF‐TBTT are lower than those of PF‐TTZT, and the bandgap of PF‐TBTT is smaller than that of PF‐TTZT. Thus the bithiazole moiety in PF‐TBTT is more electron‐withdrawing than the thiazolothiazole moiety in PF‐TTZT. Light‐emitting devices with indium tin oxide (ITO)/poly(3,4‐ethylene dioxythiophene):poly(styrenesulfonate)(PEDOT)/polymer/bis(2‐methyl‐8‐quinolinato)‐4‐phenylphenolate aluminum (BAlq)/LiF/Al configurations were fabricated. The performance of the PF‐TBTT device was found to be almost three times better than that of the PF‐TTZT device, which is because electron injection from the cathode to PF‐TBTT is much easier than for PF‐TTZT. We also investigated the planarity and frontier orbitals of the electron donor‐acceptor (D‐A) moieties with computational calculations using ab initio Hartree–Fock with the split‐valence 6‐31G* basis set. These calculations show that TBTT has a more nonplanar structure than TTZT and that the bithiazole moiety is more electron‐withdrawing than thiazolothiazole. These calculations are in good agreement with the experimental results. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7148–7161, 2008  相似文献   

3.
A new series of poly(2,3‐diphenyl‐1,4‐phenylenevinylene) derivatives containing dendritic side groups were synthesized. Different generations of dendrons were integrated on the pendant phenyl ring to investigate their effect on optical and electrical properties of final polymers. Homopolymers can not be obtained via the Gilch polymerization because of sterically bulky dendrons. By controlling the feed ratio of different monomers during polymerization, dendron‐containing copolymers with high molecular weights were obtained. The UV–vis absorption and photoluminescent spectra of the thin films are pretty close; however, quantum efficiency is significantly enhanced with increasing the generation of dendrons. The electrochemical analysis reveals that hole‐injection is also improved by increasing dendritic generation. Double‐layer light‐emitting devices with the configuration of ITO/PEDOT:PSS/polymer/Ca/Al were fabricated. High generation dendrons bring benefit of improved device performance. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3440–3450, 2007  相似文献   

4.
Two alternating copolymers, poly[(2,5‐di(2‐thienyl)‐pyridine‐5,5′‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)], PFO‐TPy25T, and poly[(2,6‐di(2‐thienyl)‐pyridine‐5,5′‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)], PFO‐TPy26T, were synthesized by the Pd‐catalyzed Suzuki polymerization method. The pyridine units are present as trimeric monomers in these copolymers and have different connectivities to their two neighboring thiophenes, para‐ and meta‐linkages. We investigated the variations in the optical and electrochemical properties of the copolymers that arise from these different connectivities. The two polymers exhibit 5% weight loss above 410 °C and high glass transition temperatures (Tg: 113 °C for PFO‐TPy25T, 142 °C for PFO‐TPy26T). The UV–vis absorption maximum peaks of PFO‐TPy25T and PFO‐TPy26T in the solid state were found to be 449 and 398 nm respectively, with photoluminescence maximum peaks in the solid state of 573 and 490 nm respectively. Using cyclic voltammetry, we determined their energy band gaps: 3.08 eV for PFO‐TPy25T and 3.49 eV for PFO‐TPy25T. The cyclic voltammetry study of these polymers revealed that there are some differences. The electroluminescence (EL) properties of the copolymers were measured for the device configuration of ITO/PEDOT/polymers/Ca/Al. The device fabricated with the polymer containing 2,5‐pyridine exhibits pale orange emission, whereas the device fabricated with the polymer containing 2,6‐pyridine exhibits pale blue emission. The EL device fabricated with PFO‐TPy25T has a higher brightness (2010 cd/m2) and external quantum efficiency (0.1%) than the PFO‐TPy26T device (260 cd/m2, 0.008%), because it has a smaller energy barrier to the injection of charges from PEDOT and Ca into the HOMO and LUMO levels. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4611–4620, 2006  相似文献   

5.
Copolymers containing oligo(phenylene vinylene) (2.5), fluorene, and 4,4‐dihexyldithienosilole (DTS) units were synthesized and characterized. The π‐conjugated monomers were joined with the palladium(0)‐catalyzed Suzuki–Miyaura coupling reaction, thus forming either biphenyl– or phenyl–thiophene linkages. These polymers were photoluminescent, with the fluorescent quantum efficiency between 54 and 63% and with λmax for fluorescence at ~448 nm in tetrahydrofuran. The presence of 5% DTS in the copolymers had little influence on the optical absorption and emission wavelengths. Double‐layer light‐emitting‐diode devices using these polymers as emissive layers had low turn‐on voltages (3.5–4 V) and moderate external quantum efficiencies (0.14–0.30%). The results show that DTS plays a positive role in improving the charge‐injection characteristics of poly(phenylene vinylene) materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2048–2058  相似文献   

6.
Linear polyfluorenes with low generation of side benzylether dendrons ( PLG0 , PLG1 ) and hyperbranched polyfluorenes with 1,3,5‐benzene branch unit ( PHG0 and PHG1 ) were prepared by the Suzuki coupling reaction to investigate the structural effect on optoelectronic properties. Their optical properties, both in solution and film state, were investigated using absorption and photoluminescence (PL) spectra. The excimer emission of polyfluorene at about 530 nm, induced by thermal annealing, was completely suppressed by the hyperbranched structure, but the suppression was not obvious by the side benzylether dendrons. The optoelectronic performance of the EL devices (ITO/PEDOT:PSS/polymer/Ca/Al) was strongly dependent upon chemical structures of the emitting polyfluorenes. The hyperbranched PHG0 with zero generation of benzylether side groups revealed the best device performance, with maximal luminance and maximal luminance efficiency of 2350 cd/m2 and 0.33 cd/A, respectively. The results suggest that incorporation of branch units with low generation of benzylether dendrons is an effective way to improve annealing stability and EL performance of the polyfluorenes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5945–5958, 2008  相似文献   

7.
8.
Both fully conjugated polymer poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylene vinylene‐alt‐9,10‐anthrylene vinylene] [poly(MEHPV‐AV)] and conjugated/nonconjugated block copolymers poly(alkanedioxy‐2‐methoxy‐1,4‐phenylene‐1,2‐ethenylene‐9,10‐anthrylene‐1,2‐ehthenylene‐3‐methoxy‐1,4‐phenylene)[poly(BFMPx‐AV), (x = 4, 8, and 12)] were synthesized by Horner–Emmons reaction utilizing potassium tert‐butoxide. Of these synthesized polymers poly(BFMP4‐AV) and poly(BFMP8‐AV), which has four and six methylene groups as solubility spacer in the main chain exhibited liquid crystalline to isotropic transition in addition to the two first order transitions. Light‐emitting diode (LED)s made from the organic solvent soluble poly(BFMP12‐AV) as emitting layer showed blue shift in the emission spectrum compared to the one made from fully conjugated poly(MEHPV‐AV). Although poly(BFMP12‐AV) had higher barrier to the electron injection from cathode than poly(MEHPV‐AV), the luminance efficiency of LED made from poly(BFMP12‐AV) was about 25 times higher than the one made from poly(MEHPV‐AV), which had fully conjugated structure. LEDs fabricated by both poly(BFMP12‐AV) and poly(MEHPV‐AV) exhibited Stoke's shift in the range of 155 to 168 nm from the absorption maximum due to the excimer formation between the ground and excited state anthracene groups. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3173–3180, 2000  相似文献   

9.
Two series of new copolyfluorenes ( PFTP, PFTT ) were prepared by the Suzuki coupling reaction from two green‐emitting dibromo monomers (TP‐Br, TT‐Br) based on triphenylamine unit to be applied in white light electroluminescent devices. They were characterized by molecular weight determination, elemental analysis, DSC, TGA, absorption and photoluminescence spectra, and cyclic voltammetry. The estimated actual contents of the TP and TT chromophores were lower than 7.8 mol % and 1.9 mol % for PFTP and PFTT , respectively. In film state both copolyfluorenes showed photoluminescence at 400–470 and 470–600 nm originated from fluorene segments and the chromophores, respectively, due to incomplete energy transfer. Light‐emitting diodes with a structure of ITO/PEDOT:PSS/copolymer/Ca(50 nm)/Al(100 nm) showed major emission at 493–525 nm, plus minor emission at 400–470 nm when chromophore contents were low. The maximum brightness and maximum current efficiency of PFTP2 device were 8370 cd/m2 and 1.47 cd/A, whereas those of PFTT1 device were 9440 cd/m2 and 1.77 cd/A, respectively. Tri‐wavelength white‐light emission was realized through blending PFTT1 with poly(9,9‐dihexylfluorene) and a red‐emitting iridium complex, in which the maximum brightness and CIE coordinates were 6880 cd/m2 and (0.31, 0.33), respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1553–1566, 2009  相似文献   

10.
Novel conjugated polyfluorene copolymers, poly[9,9‐dihexylfluorene‐2,7‐diyl‐co‐(2,5‐bis(4′‐diphenylaminostyryl)‐phenylene‐1,4‐diyl)]s (PGs), have been synthesized by nickel(0)‐mediated polymerization from 2,7‐dibromo‐9,9‐dihexylfluorene and 1,4′‐dibromo‐2,5‐bis(4‐diphenylaminostyryl)benzene with various molar ratios of the monomers. Because of the incorporation of triphenylamine (TPA) moieties, PGs exhibit much higher HOMO levels than the corresponding polyfluorene homopolymers and are able to facilitate hole injection into the polymer layer from the anode electrode in light‐emitting diodes. Conventional polymeric light‐emitting devices with the configuration ITO/PEDOT:PSS/polymer/Ca/Al have been fabricated. A light‐emitting device produced with one of the PG copolymers (PG10) as the emitting layer exhibited a voltage‐independent and stable bluish‐green emission with color coordinates of (0.22, 0.42) at 5 V. The maximum brightness and current efficiency of the PG10 device were 3370 cd/m2 (at 9.6 V) and 0.6 cd/A, respectively. To realize a white polymeric light‐emitting diode, PG10 as the host material was blended with 1.0 wt % of a red‐light‐emitting polymer, poly[9,9‐dioctylfluorene‐2,7‐diyl‐alt‐2,5‐bis(2‐thienyl‐2‐cyanovinyl)‐1‐(2′‐ethylhexyloxy)‐4‐methoxybenzene‐5′,5′‐diyl] (PFR4‐S), and poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV). The device based on PG10:PFR4‐S showed an almost perfect pure white electroluminescence emission, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.33, 0.36) at 8 V; for the PG10:MEH‐PPV device, the CIE coordinates at this voltage were (0.30, 0.40) with a maximum brightness of 1930 cd/m2. Moreover, the white‐light emission from the PG10:PFR4‐S device was stable even at different driving voltages and had CIE coordinates of (0.34, 0.36) at 6 V and (0.31, 0.35) at 10 V. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1199–1209, 2007  相似文献   

11.
Polyfluorene homopolymer ( P1 ) and its carbazole derivatives ( P2 – P4 ) have been prepared with good yield by Suzuki coupling polymerization. P2 is an alternating copolymer based on fluorene and carbazole; P3 is a hyperbranched polymer with carbazole derivative as the core and polyfluorene as the long arms; P4 is a hyperbranched polymer with carbazole derivative as the core and the alternating fluorene and carbazole as the long arms. These polymers show highly thermal stability, and their structures and physical properties are studied using gel permeation chromatography, 1H NMR, 13C NMR, elemental analysis, Fourier transform infrared spectroscopy, thermogravimetry, UV–vis absorption, photoluminescence, and cyclic voltammetry (CV). The influence of the incorporation of carbazole and the hyperbranched structures on the thermal, electrochemical, and electroluminescent properties has been investigated. Both carbazole addition and the hyperbranched structure increase the thermal and photoluminescent stability. The CV shows an increase of the HOMO energy levels for the derivatives, compared with polyfluorene homopolymer ( P1 ). The EL devices fabricated by these polymers exhibit pure blue‐light‐emitting with negligible low‐energy emission bands, indicating that the hyperbranched structure has a strong effect on the PLED characteristics. The results imply that incorporating carbazole into polyfluorene to form a hyperbranched structure is an efficient way to obtain highly stable blue‐light‐emitting conjugated polymers, and it is possible to adjust the property of light‐emitting polymers by the amount of carbazole derivative incorporated into the polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 790–802, 2008  相似文献   

12.
A disubstituted polyacetylene consisting of a poly(diphenylacetylene) backbone and a 1,2,3,4,5‐pentaphenylsilole (SiC4Ph5) pendant, that is, ? {(C6H5) C?C [C6H4O(CH2)3C?CSiC4Ph5]}n? (PS3DPA), was synthesized, and its light emission from both the backbone and the pendant was evaluated. The polymerization of C6H5C?CC6H4O(CH2)3C?CSiC4Ph5 with two ethynyl groups was effected with WCl6–Ph4Sn as the catalyst. The structure and properties of PS3DPA were characterized and evaluated by IR, UV, NMR, thermogravimetric analysis, differential scanning calorimetry, photoluminescence, and electroluminescence analyses. The ethynyl group of the diphenylacetylene moiety was polymerized exclusively, giving a soluble PS3DPA. The chloroform solution of PS3DPA showed a backbone emission that peaked at 522 nm, whereas the silole pendant was nonradiative at room temperature. The polymer did not show the aggregation‐induced emission phenomenon, probably because the silole clusters were difficult to form when the polymer chains aggregated because of the very high rigidity of the main chain. Intramolecular rotations of the phenyl groups of the silole moieties were responsible for the nonradiative decay of the silole chromophore. The intramolecular rotations, however, could be largely restricted in a cooling process of the polymer solution, showing cooling‐enhanced emission. The silole emission became dominant at lower temperatures. A multilayer electroluminescence device based on PS3DPA emitted a green light that peaked at 512 nm. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2487–2498, 2006  相似文献   

13.
A monomer containing bent side chains with oxadiazole unit was synthesized. And it was copolymerized with polyfluorene at different ratios. The photophysical and electrochemical properties of the copolymers were characterized. The results show that the introduction of the oxidiazole‐containing side chains into the polymer reduces the lowest unoccupied molecular orbital level. And the steric hindrance of the side groups can effectively suppress the aggregation of the polymer backbones. Electroluminescent devices were fabricated with a configuration of indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene (PEDOT):PSS/Sample/Ca/Al. All of the devices emit blue light. The device of the copolymer PFOXD50 shows the best performance with the maximum luminance of 1033 cd/m2 and the maximum current efficiency of 0.29 cd/A. Then a cyclometalated iridium complex monomer (ppy)2Ir(BrPhPyBr) was copolymerized with PFOXD50 at different ratios. The devices with the same configuration emit orange light. The efficiency generally increases with the increasing Ir content. Among them, the device of the copolymer PFOXDIr7 shows the best performance with the maximum luminance of 846 cd/m2 and the maximum current efficiency of 0.61 cd/A. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Four new soluble polymers containing a 2,7‐carbazole unit and a 2,1,3‐benzothiadiazole unit in the main chain were synthesized by Suzuki polycondensation. Variation of the substituent groups (R) at 5‐position of 2,1,3‐benzothiadiazole unit resulted in different color emission of the copolymers. Thus, when R was ? CH3 (or ? H), the polymer showed yellow–green (or red) emission; whereas the polymers showed the emission from green to yellow–green, when R was ? CH2(CH2)5CH3 or ? CH2OCH(CH3)2. To investigate the nature of the color change, a Gaussian 03 program was used for estimation of the dihedral angles between a 5‐R‐2,1,3‐benzothiadiazole unit and a 2,7‐carbazole unit. The results showed that the different substituents at 5‐position of 2,1,3‐benzothiadiazole brought about different the dihedral angles, which gave the different conjugation levels to the polymers. Hence, the tunablity of emission color may be attributed to the different conjugation levels between 2,7‐carbazole units and 5‐R‐2,1,3‐benzothiadiazole units induced by simply changing substituent groups at 5‐position of benzothiadiazole unit. Electrochemically, the copolymers exhibited a higher oxidation potential as well as the reversible reduction behavior bearing from 2,1,3‐benzothiadiazole unit. To investigate the electroluminescent properties of the polymers, the nonoptimized devices were fabricated and the results showed that the electroluminescent emission wavelength was basically similar to that of the photoluminescent. All polymers showed good thermal stability with 5 wt % loss temperature of more than 296 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1376–1387, 2008  相似文献   

15.
Two PPV‐based bipolar polymers containing 1,3,4‐oxadiazole pendant groups were synthesized via the Gilch polymerization reaction for use in light‐emitting diodes (LEDs). The resulting polymers were characterized using 1H and 13C NMR, elemental analysis, DSC, and TGA. These polymers were found to be soluble in common organic solvents and are easily spin‐coated onto glass substrates, producing high optical quality thin films without defects. The electro‐optical properties of ITO/PEDOT/polymer/Al devices based on these polymers were investigated using UV‐visible, PL, and EL spectroscopy. The turn‐on voltages of the OC1Oxa‐PPV and OC10Oxa‐PPV devices were found to be 8.0 V. The maximum brightness and luminescence efficiency of the OC1Oxa‐PPV device were found to be 544 cd/m2 at 19 V and 0.15 cd/A, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1098–1110, 2008  相似文献   

16.
Novel copolymers derived from amino‐functionalized fluorene‐ and selenium‐containing heterocycles [2,1,3‐benzoselenadiazole (BSeD)] were synthesized by the palladium‐catalyzed Suzuki coupling method. Their quaternized salt polyelectrolytes of corresponding compositions were obtained by a postpolymerization treatment. The resulting copolymers were soluble in polar solvents. An efficient energy transfer due to exciton trapping on the BSeD sites was observed. Devices from such copolymers emitted orange‐red light peaked at 560–610 nm. All the polymers showed good device performance with high‐work‐function metal Al as a cathode without the use of an additional electron‐injection layer and are promising candidates for polymer light‐emitting diode applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2521–2532, 2006  相似文献   

17.
Blue light‐emitting materials are receiving considerable academic and industrial interest due to their potential applications in optoelectronic devices. In this study, blue light‐emitting copolymers based on 9,9′ ‐ dioctylfluorene and 2,2′‐(1,4‐phenylene)‐bis(benzimidazole) moieties were synthesized through palladium‐catalyzed Suzuki coupling reaction. While the copolymer consisting of unsubstituted benzimidazoles (PFBI0) is insoluble in common organic solvents, its counterpart with N‐octyl substituted benzimidazoles (PFBI8) enjoys good solubility in toluene, tetrahydrofuran, dichloromethane (DCM), and chloroform. The PFBI8 copolymer shows good thermal stability, whose glass transition temperature and onset decomposition temperature are 103 and 428 °C, respectively. Its solutions emit blue light efficiently, with the quantum yield up to 99% in chloroform. The electroluminescence (EL) device of PFBI8 with the configuration of indium‐tin oxide/poly(ethylenedioxythiophene):poly(styrene sulfonic acid)/PFBI8/1,3,5‐tris(1‐phenyl‐1H‐benzimidazole‐2‐yl)benzene/LiF/Al emits blue light with the maximum at 448 nm. Such unoptimized polymer light‐emitting diode (PLED) exhibits a maximum luminance of 1534 cd/m2 with the current efficiency and power efficiency of 0.67 cd/A and 0.20 lm/W, respectively. The efficient blue emission and good EL performance make PFBI8 promising for optoelectronic applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Novel blue‐emitting germanium‐containing poly(p‐phenylenevinylene) (PPV) derivatives with well‐defined conjugation lengths were synthesized via Wittig‐condensation polymerizations. The polymers can be color‐tuned by the introduction of various chromophores into the PPV‐based polymer backbones. The photoluminescence (PL) spectra of the polymers, GePVK (containing carbazole moieties), GeMEH (containing dialkoxybenzene moieties), and GePTH (containing phenothiazine moieties), were found to exhibit blue, greenish blue, and green emissions, respectively. GePTH produces more red‐shifted emission than GeMEH and GEPVK, resulting in green emission, and the solution and solid state PL spectra of GePVK consist of almost blue emission. The electroluminescence spectra of GeMEH and GePTH contain yellowy green and yellow colors, respectively. Interestingly, GePVK exhibits white emission with CIE coordinates of (0.33, 0.37) due to electroplex emission in the light‐emitting diodes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 979–988, 2008  相似文献   

19.
A novel donor–acceptor type conjugated polymer based on PPE with [2.2]paracyclophane and benzothiadiazole units in the main chain was synthesized by the Sonogashira coupling reaction. The obtained polymer was quite soluble in common organic solvents, and the transparent and uniform thin film of the polymer was obtained easily by casting or spin‐coating from a toluene solution. The polymer showed an extension of π‐delocalization via the through‐space with π‐π stacking according to the UV–visible (UV–vis) absorption spectra in comparison with that of the model compound. The polymer exhibited orange photoluminescence in solution (fluorescence quantum efficiency = 0.13) and in the solid state. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5891–5899, 2004  相似文献   

20.
Three random copolymers ( P1–P3 ) comprising phenylenevinylene and electron‐transporting aromatic 1,3,4‐oxadiazole segments (11, 18, 28 mol %, respectively) were prepared by Gilch polymerization to investigate the influence of oxadiazole content on their photophysical, electrochemical, and electroluminescent properties. For comparative study, homopolymer poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐p‐phenylenevinylene] ( P0 ) was also prepared by the same process. The polymers ( P0–P3 ) are soluble in common organic solvents and thermally stable up to 410 °C under a nitrogen atmosphere. Their optical properties were investigated by absorption and photoluminescence spectroscopy. The optical results reveal that the aromatic 1,3,4‐oxadiazole chromophores in P1–P3 suppress the intermolecular interactions. The HOMO and LUMO levels of these polymers were estimated from their cyclic voltammograms. The HOMO levels of P0–P3 are very similar (?5.02 to ?5.03 eV), whereas their LUMO levels decrease readily with increasing oxadiazole content (?2.7, ?3.08, ?3.11, and ?3.19 eV, respectively). Therefore, the electron affinity of the poly(p‐phenylenevinylene) chain can be gradually enhanced by incorporating 1,3,4‐oxadiazole segments. Among the polymers, P1 (11 mol % 1,3,4‐oxadiazole) shows the best EL performance (maximal luminance: 3490 cd/m2, maximal current efficiency: 0.1 cd/A). Further increase in oxadiazole content results in micro‐phase separation that leads to performance deterioration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4377–4388, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号