首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High‐throughput experimentation (HTE) was successfully applied in atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) for the rapid screening and optimization of different reaction conditions. A library of 108 different reactions was designed for this purpose, which used four different initiators [ethyl 2‐bromoisobutyrate, methyl 2‐bromopropionate, (1‐bromoethyl)benzene, and p‐toluenesulfonyl chloride], five metal salts (CuBr, CuCl, CuSCN, FeBr2, and FeCl2), and nine ligands (2,2′‐bipyridine and its derivatives). The optimal reaction conditions for Cu(I) halide, CuSCN, and Fe(II) halide‐mediated ATRP systems with 2,2′‐bipyridine and its 4,4′‐dialkyl‐substituted derivatives as ligands were determined. Cu(I)‐mediated systems were better controlled than Fe(II)‐mediated ones under the examined conditions. A bipyridine‐type ligand with a critical length of the substituted alkyl group (i.e., 4,4′‐dihexyl 2,2′‐bipyridine) exhibited the best performance in Cu(I)‐mediated systems, and p‐toluenesulfonyl chloride and ethyl 2‐bromoisobutyrate could effectively initiate Cu(I)‐mediated ATRP of MMA, resulting in polymers with low polydispersities in most cases. Besides, Cu(I) halide‐mediated ATRP with 4,5′‐dimethyl 2,2′‐bipyridine as the ligand and p‐toluenesulfonyl chloride as the initiator proved to be better controlled than those with 4,4′‐dimethyl 2,2′‐bipyridine as the ligand, and polymers with much lower polydispersities were obtained in the former cases. This successful HTE example opens up a way to significantly accelerate the development of new catalytic systems for ATRP and to improve the understanding of structure–property relationships of the reaction systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1876–1885, 2004  相似文献   

2.
A series of ferrocene‐based well‐defined amphiphilic graft copolymers, consisting of hydrophilic poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) backbone and hydrophobic poly(2‐acryloyloxyethyl ferrocenecarboxylate) (PAEFC) side chains were synthesized by successive single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was prepared by SET‐LRP of PEGMEA macromonomer, and it was then treated with lithium di‐isopropylamide and 2‐bromopropionyl bromide at ?78 °C to give PPEGMEA‐Br macroinitiator. The targeted well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.32) were synthesized via ATRP of AEFC initiated by PPEGMEA‐Br macroinitiator, and the molecular weights of the backbone and side chains were both controllable. The electro‐chemical behaviors of graft copolymers were studied by cyclic voltammetry, and it was found that graft copolymers were more difficult to be oxidized, and the reversibility of electrode process became less with raising the content of PAEFC segment. The effects of the preparation method, the length of hydrophobic PAEFC segment, and the initial water content on self‐assembly behavior of PPEGMEA‐g‐PAEFC graft copolymers in aqueous media were investigated by transmission electron microscopy. The morphologies of micelles could transform from cylinders to spheres or rods with changing the preparation condition and the length of side chains. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Summary: Block copolymers of poly(ethylene oxide‐block‐2‐hydroxypropyl methacrylate) (PEO‐b‐PHPMA) with a range of molecular masses of the PHPMA block were obtained by controlled radical polymerization on a chip (CRP chip) using a PEO macroinitiator. A series of well‐controlled polymerizations were carried out at different pumping rates or reaction times with a constant ratio of monomer to initiator. The stoichiometry of the reactants was also adjusted by varying relative flow rates to change the reactant concentrations.

A schematic of a CRP chip and SEC traces of the PEO‐b‐PHPMA produced from different pump rates with a 1:100 ratio of initiator to monomer. The dashed peaks are the macroinitiator, PEO‐Br (left), and monomer, HPMA (right).  相似文献   


4.
Living cationic ring‐opening polymerizations of 2‐ethyl‐2‐oxazoline and purification of the resulting polymers were performed utilizing an automated synthesizer. Eight polymers (500 mg scale) as well as 40 polymers (150 mg scale) were synthesized in parallel to investigate the reproducibility and the living character of the polymerizations. The poly(2‐ethyl‐2‐oxazoline)s obtained such were characterized by means of 1H NMR spectroscopy, MALDI‐TOF mass spectrometry and online gel permeation chromatography.

  相似文献   


5.
Summary: The living polymerization of N,N‐dimethylacrylamide was achieved by atom transfer radical polymerization catalyzed by copper chloride complexed with a new ligand, N,N′‐bis(pyridin‐2‐ylmethyl 3‐hexoxo‐3‐oxopropyl)ethane‐1,2‐diamine (BPED). With methyl 2‐chloropropionate as the initiator, the polymerization reached high conversions (> 90%) at 80 °C and 100 °C, producing polymers with very close to theoretical values and low polydispersity. The ligand, temperature, and copper halide strongly affected the activity and control of the polymerization.

PDMA molecular weight and polydispersity dependence on the DMA conversion in the DMA bulk polymerizations at different temperatures: DMA/CuCl/MCP/BPED = 100/1/1/1, 100 °C (♦, ⋄); 80 °C (▴, ▵); 60 °C (▪, □); and DMA/CuCl/MCP/BPED = 100/1/1/2, 80 °C (•, ○).  相似文献   


6.
Copolymerization of acrylic acid and p‐chloromethylstyrene (p‐CMS) in dioxane initiated with α,α′‐azobisisobutyronitrile was carried out to produce macroinitiator P(AA‐co‐CMS) containing PhCH2Cl group at 65°C. Then methyl methacrylate was grafted onto P(AA‐co‐CMS) backbone using PhCH2Cl group as an initiation site and FeCl2/triphenyl phosphine complex as a catalyst. The resulted copolymer (AA‐co‐CMS)‐g‐PMMA with a comb‐like branched structure has a hydrophilic backbone (PAA) and hydrophobic side chains (PMMA). Compositions and structures of macroinitiator and the grafted product of P(AA‐co‐CMS)‐g‐PMMA were determined by 1H‐NMR, infrared (IR), and gel permeation chromatography (GPC). The average graft number, the average length of branch chains, the graft ratio, and the graft efficiency were investigated. The swelling behavior of the comb‐like branched polymer was also investigated. The gradual increase of swelling ratios was accompanied by an increase of pH and temperature. The kinetic exponents indicated that the swelling transport mechanisms transformed from Fickian diffusion to non‐Fickian transport as the decreasing pH. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A parallel synthetic approach toward homogeneous atom‐transfer radical polymerization of methyl methacrylate has been successfully applied by utilizing an automated synthesizer. Experimental set‐up, automated parallel synthesis and purification of the polymers via a solid‐phase extraction set‐up, as well as online and offline measurements of the molecular weights and monomer conversion are described in detail. In addition, a comparison with conventional experiments in the laboratory is provided.

Kinetic plots of ln([M]0/[M]) versus reaction time of the ATRP of MMA in p‐xylene at 90 °C conducted in an automated synthesizer (three parallel reactions, ○, ▵, ⋄) and in a conventional set‐up (▪).  相似文献   


8.
Hybrid nanoparticles with a silica core and grafted poly(methyl methacrylate) (PMMA) or poly(n‐butyl methacrylate) (PBMA) chains were prepared via activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP) at room temperature under high pressure. Due to enhanced propagation rate constant and reduced termination rate constant for polymerizations conducted under high pressure, the rate of polymerization was increased, while preserving good control over polymerization when compared to ATRP under ambient pressure. Molecular weights of greater than 1 million were obtained. The PMMA and PBMA brushes exhibited “semi‐diluted” or “diluted” brush architecture with the highest grafting densities ≈0.3 chain·nm−2.

  相似文献   


9.
The block glycopolymer, poly(2‐(α‐d ‐mannopyranosyloxy)ethyl methacrylate)‐b‐poly(l ‐lactide) (PManEMA‐b‐PLLA), was synthesized via a coupling approach. PLLA having an ethynyl group was successfully synthesized via ring‐opening polymerization using 2‐propyn‐1‐ol as an initiator. The ethynyl functionality of the resulting polymer was confirmed by MALDI‐TOF mass spectroscopy. In contrast, PManEMA having an azide group was prepared via AGET ATRP using 2‐azidopropyl 2‐bromo‐2‐methylpropanoate as an initiator. The azide functionality of the resulting polymer was confirmed by IR spectroscopy. The Cu(I)‐catalyzed 1,3‐dipolar cycloaddition between PLLA and PManEMA was performed to afford PManEMA‐b‐PLLA. The block structure was confirmed by 1H NMR spectroscopy and size exclusion chromatography. The aggregating properties of the block glycopolymer, PManEMA16kb‐PLLA6.4k (M n,PManEMA = 16,000, M n,PLLA = 6400) was examined by 1H NMR spectroscopy, fluorometry using pyrene, and dynamic light scattering. The block glycopolymer formed complicated aggregates at concentrations above 21 mg·L?1 in water. The d ‐mannose presenting property of the aggregates was also characterized by turbidimetric assay using concanavalin A. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 395–403  相似文献   

10.
Kinetic studies of the atom transfer radical polymerization (ATRP) of styrene are reported, with the particular aim of determining radical‐radical termination rate coefficients (<kt>). The reactions are analyzed using the persistent radical effect (PRE) model. Using this model, average radical‐radical termination rate coefficients are evaluated. Under appropriate ATRP catalyst concentrations, <kt> values of approximately 2 × 108 L mol?1 s?1 at 110 °C in 50 vol % anisole were determined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5548–5558, 2004  相似文献   

11.
Copper(0)‐mediated controlled radical polymerization (CRP), or single‐electron transfer‐living radical polymerization (SET‐LRP) is a robust and dynamic technique that has attracted considerable academic and industrial interest as a synthetic tool for novel value‐added materials. Although SET‐LRP possesses many advantages over other forms of CRP, this novel chemistry still requires concurrent engineering solutions for successful commercial application. In this highlight, the evolution of atom‐transfer radical polymerization chemistry and development in continuous processes is presented, leading to recent research on the use of SET‐LRP in continuous flow tubular reactors. The proofs of concept are reviewed, and remaining challenges and unexplored potential on the use of continuous flow processes with SET‐LRP as a powerful platform for the synthesis of novel polymeric materials are discussed. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3081–3096  相似文献   

12.
Polymeric forms of ionic liquids may have many potential applications because of their high thermal stability and ionic nature. They are generally synthesized by conventional free‐radical polymerization. Here we report a living/controlled free‐radical polymerization of an ionic liquid monomer, 2‐(1‐butylimidazolium‐3‐yl)ethyl methacrylate tetrafluoroborate (BIMT), via atom transfer radical polymerization. Copper bromide/bromide based initiator systems polymerized BIMT very quickly with little control because of fast activation but slow deactivation. With copper chloride as the catalyst and trichloroacetate, CCl4, or ethyl α‐chlorophenylacetate as the initiator, BIMT was polymerized at 60 °C in acetonitrile with first‐order kinetics with respect to the monomer concentration. The molecular weight was linearly dependent on the conversion. The monomer concentration strongly affected the polymerization: a low monomer concentration caused the polymerization to be incomplete, probably because of catalyst disproportionation in polar solvents. The addition of a small amount of pyridine suppressed such disproportionation, but a further increase in the amount of pyridine greatly slowed the polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5794–5801, 2004  相似文献   

13.
Isobornyl methacrylate (IBMA), a bulky hydrophobic methacrylate, undergoes very fast polymerization, in bulk, with Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA)/ethyl‐2‐bromoisobutyrate system, at ambient temperature. IBMA also undergoes a spontaneous initiator‐free polymerization, at ambient temperature, with Cu(I)Br/PMDETA catalytic system in dimethyl sulfoxide–water mixtures. The rate of the polymerization is seen to increase with the water content up to 80 mol % of water. A possible intervention of air in initiation is proposed. The active Cu(0) formed by the disproportionation of Cu(I) species in aqueous medium probably plays a vital role for a possible air‐initiation of IBMA via single electron transfer‐living radical polymerization (SET‐LRP) mechanism. A high tolerance level to water under SET‐LRP conditions is demonstrated. The poly(IBMA) samples obtained exhibit low molecular weight distributions (1.1–1.3). Similar behavior was not observed with other common methacrylates such as methyl methacrylate, t‐butyl methacrylate, cyclohexyl methacrylate, and benzyl methacrylate. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Initiators for continuous activator regeneration in atom transfer radical polymerization (ICAR ATRP) is a new technique for conducting ATRP. ICAR ATRP has many strong advantages over normal ATRP, such as forming the reductive transition metal species in situ using oxidatively stable transition metal species and a lower amount of metal catalyst in comparison with the normal ATRP system. In this work, the iron‐mediated ICAR ATRP of styrene and methyl methacrylate are reported for the first time using oxidatively stable FeCl3 · 6H2O as the catalyst in the absence of any thermal radical initiator. The kinetics of the polymerizations and effect of different polymerization conditions are studied. It is found that the polymerization of styrene can be conducted well even if the amount of iron(III ) is as low as 50 ppm.

  相似文献   


15.
A series of well‐defined double hydrophilic graft copolymers containing poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) backbone and poly[poly(ethylene glycol) ethyl ether methacrylate] (PPEGEEMA) side chains were synthesized by the combination of single electron transfer‐living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained comb copolymer was treated with lithium diisopropylamide and 2‐bromoisobutyryl bromide to give PPEGMEA‐Br macroinitiator. Finally, PPEGMEA‐g‐PPEGEEMA graft copolymers were synthesized by ATRP of poly(ethylene glycol) ethyl ether methacrylate macromonomer using PPEGMEA‐Br macroinitiator via the grafting‐from route. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept narrow (Mw/Mn ≤ 1.20). This kind of double hydrophilic copolymer was found to be stimuli‐responsive to both temperature and ion (0.3 M Cl? and SO). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 647–655, 2010  相似文献   

16.
2‐Hydroxyethyl methacrylate has been polymerized in methanol using activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP), to produce water‐soluble poly(2‐hydroxyethyl methacrylate) (PHEMA). The various parameters that determine control of the living polymerization have been explored. Using the Cu(II)/TPMA catalyst system (TPMA = tris(2‐pyridylmethyl)amine), controlled polymerization was achieved with Cu concentrations as low as 50 ppm relative to HEMA, with a [TPMA]/[Cu(II)] ratio of 5. Use of hydrazine as the reducing agent generally gave better control of polymerization than use of ascorbic acid. The polymerization conditions were tolerant of small amounts of air, and colorless polymers were easily isolated by simple precipitation and washing steps. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4084–4092, 2010  相似文献   

17.
An N‐alkoxyamine macroinitiator bearing a polymeric nitroxide cap was synthesized and used to investigate the effect of nitroxide size on the rate of nitroxide‐mediated radical polymerization (NMRP). This macroinitiator was prepared from asymmetric double‐headed initiator 9 , which contains both an α‐bromoester and an N‐alkoxyamine functionality. Poly(methyl methacrylate) was grown by atom transfer radical polymerization from the α‐bromoester end of this initiator, resulting in a macroinitiator (Mn = 31,000; PDI = 1.34) bearing a nitroxide cap permanently attached to a polymer chain. The polymerization kinetics of this macroinitiator in NMRP were compared with known N‐alkoxyamine initiator 1 . It was found that the rate of polymerization was unaffected by the size of the macromolecular nitroxide cap. It was confirmed that NMRP using this macroinitiator is a “living” process. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2015–2025, 2007  相似文献   

18.
The syntheses of well‐defined 7‐arm and 21‐arm poly(N‐isopropylacrylamide) (PNIPAM) star polymers possessing β‐cyclodextrin (β‐CD) cores were achieved via the combination of atom transfer radical polymerization (ATRP) and click reactions. Heptakis(6‐deoxy‐6‐azido)‐β‐cyclodextrin and heptakis[2,3,6‐tri‐O‐(2‐azidopropionyl)]‐β‐cyclodextrin, β‐CD‐(N3)7 and β‐CD‐(N3)21, precursors were prepared and thoroughly characterized by nuclear magnetic resonance and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. A series of alkynyl terminally functionalized PNIPAM (alkyne‐PNIPAM) linear precursors with varying degrees of polymerization (DP) were synthesized via atom transfer radical polymerization (ATRP) of N‐isopropylacrylamide using propargyl 2‐chloropropionate as the initiator. The subsequent click reactions of alkyne‐PNIPAM with β‐CD‐(N3)7 and β‐CD‐(N3)21 led to the facile preparation of well‐defined 7‐arm and 21‐arm star polymers, namely β‐CD‐(PNIPAM)7 and β‐CD‐(PNIPAM)21. The thermal phase transition behavior of 7‐arm and 21‐arm star polymers with varying molecular weights were examined by temperature‐dependent turbidity and micro‐differential scanning calorimetry, and the results were compared to those of linear PNIPAM precursors. The anchoring of PNIPAM chain terminal to β‐CD cores and high local chain density for star polymers contributed to their considerably lower critical phase separation temperatures (Tc) and enthalpy changes during phase transition as compared with that of linear precursors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 404–419, 2009  相似文献   

19.
A series of well‐defined ferrocene‐based amphiphilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐acryloyloxyethyl ferrocenecarboxylate) (PAEFC) side chains, were synthesized by the combination of single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). A new ferrocene‐based monomer, 2‐(acryloyloxy)ethyl ferrocenecarboxylate (AEFC), was prepared first and it can be polymerized via ATRP in a controlled way using methyl 2‐bromopropionate as initiator and CuBr/PMDETA as catalytic system in DMF at 40 °C. PNIPAM‐b‐PEA backbone was synthesized by sequential SET‐LRP of NIPAM and HEA at 25 °C using CuCl/Me6TREN as catalytic system followed by the transformation into the macroinitiator by treating the pendant hydroxyls with α‐bromoisobutyryl bromide. The targeted well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn < 1.20) were synthesized via ATRP of AEFC initiated by the macroinitiator. The electro‐chemical behaviors of PAEFC homopolymer and PNIPAM‐b‐(PEA‐g‐PAEFC) graft copolymer were studied by cyclic voltammetry. Micellar properties of PNIPAM‐b‐(PEA‐g‐PAEFC) were investigated by transmission electron microscopy and dynamic light scattering. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4346–4357, 2009  相似文献   

20.
An asymmetric difunctional initiator 2‐phenyl‐2‐[(2,2,6,6 tetramethylpiperidino)oxy] ethyl 2‐bromo propanoate ( 1 ) was used for the synthesis of ABC‐type methyl methacrylate (MMA)‐tert‐butylacrylate (tBA)‐styrene (St) triblock copolymers via a combination of atom transfer radical polymerization (ATRP) and stable free‐radical polymerization (SFRP). The ATRP‐ATRP‐SFRP or SFRP‐ATRP‐ATRP route led to ABC‐type triblock copolymers with controlled molecular weight and moderate polydispersity (Mw/Mn < 1.35). The block copolymers were characterized by gel permeation chromatography and 1H NMR. The retaining chain‐end functionality and the applying halide exchange afforded high blocking efficiency as well as maintained control over entire routes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2025–2032, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号