首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose mixed and hybrid formulations for the three‐dimensional magnetostatic problem. Such formulations are obtained by coupling finite element method inside the magnetic materials with a boundary element method. We present a formulation where the magnetic field is the state variable and the boundary approach uses a scalar Dirichlet‐Neumann map to describe the exterior domain. Also, we propose a second formulation where the magnetic induction is the state variable and a vectorial Dirichlet‐Neumann map is used to describe the outer field. Numerical discretizations with “edge” and “face” elements are proposed, and for each discrete problem we study an “inf‐sup” condition. © 2002 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 18: 85–104, 2002  相似文献   

2.
In this note we analyze a modified mixed finite element method for second‐order elliptic equations in divergence form. As a model we consider the Poisson problem with mixed boundary conditions in a polygonal domain of R 2. The Neumann (essential) condition is imposed here in a weak sense, which yields the introduction of a Lagrange multiplier given by the trace of the solution on the corresponding boundary. This approach allows to handle nonhomogeneous Neumann boundary conditions, theoretically and computationally, in an alternative and usually easier way. Then we utilize the classical Babu?ka‐Brezzi theory to show that the resulting mixed variational formulation is well posed. In addition, we use Raviart‐Thomas spaces to define the associated finite element method and, applying some elliptic regularity results, we prove the stability, unique solvability, and convergence of this discrete scheme, under appropriate assumptions on the mesh sizes. Finally, we provide numerical results illustrating the performance of the algorithm for smooth and singular problems. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 192–210, 2003  相似文献   

3.
In this paper a mixed method, which combines the finite element method and the differential quadrature element method (DQEM), is presented for solving the time dependent problems. In this study, the finite element method is first used to discretize the spatial domain. The DQEM is then employed as a step-by-step DQM in time domain to solve the resulting initial value problem. The resulting algebraic equations can be solved by either direct or iterative methods. Two general formulations using the DQM are also presented for solving a system of linear second-order ordinary differential equations in time. The application of the formulation is then shown by solving a sample moving load problem. Numerical results show that the present mixed method is very efficient and reliable.  相似文献   

4.
As a first endeavor, a mixed differential quadrature (DQ) and finite element (FE) method for boundary value structural problems in the context of free vibration and buckling analysis of thick beams supported on two-parameter elastic foundations is presented. The formulations are based on the two-dimensional theory of elasticity. The problem domain along axial direction is discretized using finite elements. The resulting system of equations and the related boundary conditions are discretized in the thickness direction and in strong-form using DQM. The method benefits from low computational efforts of the DQ in conjunction with the effectiveness of the FE method in general geometry and systematic boundary treatment resulting in highly accurate and fast convergence behavior solution. The boundary conditions at the top and bottom surface of the beams are implemented accurately. The presented formulations provide an effective analysis tool for beams free of shear locking. Comparisons are made with results from elasticity solutions as well as higher-order beam theory.  相似文献   

5.
This paper concerns the numerical solution of the nearly elasticwave equations with the first-order absorbing boundary condition;these equations describe the motion of a nearly elastic solidin the frequency domain. Two mixed finite elements, the Johnson-Mercierelement and the Arnold-Douglas-Gupta element, are adapted andanalyzed for the problem. The resulting mixed finite elementequations are complex-valued and are neither Hermitian nor definite.As a result, most standard iterative methods fail to convergefor the systems. To solve the mixed finite element equations,a parallelizable domain decomposition iterative method is proposed.The convergence of the method is demonstrated and a rate ofconvergence of the form 1 - Ch is derived. These results arevalid for the case when the original domain is decomposed intosubdomains which consist of an individual element associatedwith the above two mixed finite elements.  相似文献   

6.
In this paper, we present a domain decomposition method, based on the general theory of Steklov-Poincaré operators, for a class of linear exterior boundary value problems arising in potential theory and heat conductivity. We first use a Dirichlet-to-Neumann mapping, derived from boundary integral equation methods, to transform the exterior problem into an equivalent mixed boundary value problem on a bounded domain. This domain is decomposed into a finite number of annular subregions, and the Dirichlet data on the interfaces is introduced as the unknown of the associated Steklov-Poincaré problem. This problem is solved with the Richardson method by introducing a Dirichlet-Robin-type preconditioner, which yields an iteration-by-subdomains algorithm well suited for parallel computations. The corresponding analysis for the finite element approximations and some numerical experiments are also provided.  相似文献   

7.
In the context of convex analysis, macro-hybrid variational formulations of constrained boundary value problems are presented. Monotone mixed variational inclusions are macro-hybridized on the basis of nonoverlapping domain decompositions, and corresponding three-field versions are derived. Then, for regularization purposes, augmented formulations are established via preconditioned exact penalizations and expressed in terms of proximation operators. Optimization interpretations are given for potential problems, recovering the classic two- and three-field augmented Lagrangian formulations. Furthermore, associated parallel two- and three-field proximal-point algorithms are discussed for numerical resolution of finite element discretizations. Applications to dual mixed variational formulations of problems from mechanics illustrate the theory.  相似文献   

8.
On the basis of composition duality principles, augmented three-field macro- hybrid mixed variational problems and finite element schemes are analyzed. The compatibility condition adopted here, for compositional dualization, is the coupling operator surjectivity, property that expresses in a general operator sense the Ladyenskaja-Babuka-Brezzi inf-sup condition. Variational macro-hybridization is performed under the assumption of decomposable primal and dual spaces relative to nonoverlapping domain decomp...  相似文献   

9.
This paper deals with the finite element solution of the eddy current problem in a bounded conducting domain, crossed by an electric current and subject to boundary conditions appropriate from a physical point of view. Two different cases are considered depending on the boundary data: input current density flux or input current intensities. The analysis of the former is an intermediate step for the latter, which is more realistic in actual applications. Weak formulations in terms of the magnetic field are studied, the boundary conditions being imposed by means of appropriate Lagrange multipliers. The resulting mixed formulations are analyzed depending on the regularity of the boundary data. Finite element methods are introduced in each case and error estimates are proved. Finally, some numerical results to assess the effectiveness of the methods are reported.

  相似文献   


10.
Summary.   We combine a primal mixed finite element approach with a Dirichlet-to-Neumann mapping (arising from the boundary integral equation method) to study the weak solvability and Galerkin approximations of a class of linear exterior transmission problems in potential theory. Our results are mainly based on the Babuska-Brezzi theory for variational problems with constraints. We establish the uniqueness of solution for the continuous and discrete formulations, and show that finite element subspac es of Lagrange type satisfy the discrete compatibility conditions. In addition, we provide the error analysis, including polygonal approximations of the domain, and prove strong convergence of the Galerkin solutions. Moreover, under additional regularity assumptions on the solution of the continuous formulation, we obtain the asymptotic rate of convergence O(h). Received August 25, 1998 / Revised version received March 8, 2000 / Published online October 16, 2000  相似文献   

11.
Summary. In this paper we consider the numerical simulations of the incompressible materials on an unbounded domain in . A series of artificial boundary conditions at a circular artificial boundary for solving incompressible materials on an unbounded domain is given. Then the original problem is reduced to a problem on a bounded domain, which be solved numerically by a mixed finite element method. The numerical example shows that our artificial boundary conditions are very effective. ReceivedJune 7, 1995 / Revised version received August 19, 1996  相似文献   

12.
无界区域上Stokes问题的自然边界元与有限元耦合法   总被引:10,自引:4,他引:10  
余德浩 《计算数学》1992,14(3):371-378
§1.引言 对于用有限元方法求解平面有界区域上的Stokes问题,国内外已有大量工作,例如可见[2]、[9]及其所引文献.但对无界区域上的这一问题,由于区域的无界性给有限元方法带来了困难,边界元方法及边界元与有限元的耦合法便显示其优越性.本文提出用自然边界元与有限元的耦合法求解无界区域上的Stokes问题.这一耦合法早在作者以前的工作中被应用于求解调和问题、重调和问题和平面弹性问题,但将它用于求解  相似文献   

13.
In this article we study two families of multiscale methods for numerically solving elliptic homogenization problems. The recently developed multiscale finite element method [Hou and Wu, J Comp Phys 134 (1997), 169–189] captures the effect of microscales on macroscales through modification of finite element basis functions. Here we reformulate this method that captures the same effect through modification of bilinear forms in the finite element formulation. This new formulation is a general approach that can handle a large variety of differential problems and numerical methods. It can be easily extended to nonlinear problems and mixed finite element methods, for example. The latter extension is carried out in this article. The recently introduced heterogeneous multiscale method [Engquist and Engquist, Comm Math Sci 1 (2003), 87–132] is designed for efficient numerical solution of problems with multiscales and multiphysics. In the second part of this article, we study this method in mixed form (we call it the mixed heterogeneous multiscale method). We present a detailed analysis for stability and convergence of this new method. Estimates are obtained for the error between the homogenized and numerical multiscale solutions. Strategies for retrieving the microstructural information from the numerical solution are provided and analyzed. Relationship between the multiscale finite element and heterogeneous multiscale methods is discussed. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

14.
Michael E. Hammer 《PAMM》2011,11(1):217-218
We will present a comparison between two formulations of the normal vector field for contact algorithms based on the mortar method. First the non steady normal field is discussed. The non steadiness is a result of the C0 continuity of the boundary discretization. This is the common result if one discretize the domain with classical finite element methods. Second we will present results for a special normal field distribution. We average the nodal normal vector of two ascending edges and interpolate this nodal normal throughout the edges. We have implemented both methods and present comparisons based on numerical experiments. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
M. Wagner  L. Gaul 《PAMM》2002,1(1):12-13a
The so‐called hybrid stress boundary element method (HSBEM) is introduced in a frequency domain formulation for the computation of acoustic radiation and scattering in closed and in finite domains. Different from other boundary element formulations, the HSBEM is based on an extended Hellinger‐Reissner variational principle and leads to a Hermitian, frequency‐dependent stiffness equation. Due to this, the method is very well suited for treating fluid structure interaction problems since the effort for the coupling the structure, discretized by a finite elements, and the fluid, discretized by the HSBEM is strongly reduced. To arrive at a boundary integral formulation, the field variables are separated into boundary variables, which are approximated by piecewise polynomial functions, and domain variables, which are approximated by a superposition of singular fundamental solutions weighed by source strength. This approximation cancels the domain integral over the equation of motion in the hybrid principle and leads to a boundary integral formulation, incorporating singular integrals. Comparing to previous results published by the authors, new considerations concerning the interpretation of singular contributions in the stiffness matrix for exterior domain problems are communicated here.  相似文献   

16.
We analyze the finite element approximation of the spectral problem for the linear elasticity equation with mixed boundary conditions on a curved non-convex domain. In the framework of the abstract spectral approximation theory, we obtain optimal order error estimates for the approximation of eigenvalues and eigenvectors. Two kinds of problems are considered: the discrete domain does not coincide with the real one and mixed boundary conditions are imposed. Some numerical results are presented.  相似文献   

17.
We introduce and analyze the coupling of a mixed finite element and a boundary element for a three‐dimensional time‐harmonic fluid–solid interaction problem. We consider a formulation in which the Cauchy stress tensor and the rotation are the main variables in the elastic structure and use the usual pressure formulation in the acoustic fluid. The mixed variational formulation in the solid is completed with boundary integral equations relating the Cauchy data of the acoustic problem on the coupling interface. A crucial point in our formulation is the stabilization technique introduced by Hiptmair and coworkers to avoid the well‐known instability issue appearing in the boundary element method treatment of the exterior Helmholtz problem. The main novelty of this formulation, with respect to a previous approach, consists in reducing the computational domain to the solid media and providing a more accurate treatment of the far field effect. We show that the continuous problem is well‐posed and propose a conforming Galerkin method based on the lowest‐order Arnold–Falk–Winther mixed finite element. Finally, we prove that the numerical scheme is convergent with optimal order.Copyright © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1211–1233, 2014  相似文献   

18.
The aim of the paper is to provide the mathematical foundation of effective numerical algorithms for the optimal design of periodic binary gratings. Special attention is paid to reliable methods for the computation of diffraction efficiencies and of the gradients of certain functionals with respect to the parameters of the non-smooth grating profile. The methods are based on a generalized finite element discretization of strongly elliptic variational formulations of quasi-periodic transmission problems for the Helmholtz equation in a bounded domain coupled with boundary integral representations in the exterior. We prove uniqueness and existence results for quite general situations and analyse the convergence of the numerical solutions. Furthermore, explicit formulas for the partial derivatives of the reflection and transmission coefficients with respect to the parameters of a binary grating profile are derived. Finally, we briefly discuss the implementation of the generalized finite element method for solving direct and adjoint diffraction problems and present some numerical results. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

19.
A scalar contact problem with friction governed by the Yukawa equation is reduced to a boundary variational inequality. The presence of the non‐differentiable friction functional causes some difficulties when approximated. We present two methods to overcome this difficulty. The first one is a regularization leading to a non‐linear boundary variational equation, for which we propose an iterative procedure, whereas the second method is based on the boundary mixed variational formulation involving Lagrange multipliers. We propose Uzawa's algorithm to compute the saddle point of the corresponding boundary Lagrangian and investigate the discretization of various formulations by the boundary element Galerkin method. Convergence of the boundary element solution is proved and a convergence order is obtained. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
We apply the boundary integral equation method and a primal mixed finite element approach to study the weak solvability and Galerkin approximations of linear interior transmission problems arising in potential theory and elastostatics. The existence and uniqueness of solution of the resulting weak formulations and of the associated discrete schemes are derived by using the classical theory for variational problems with constraints. Suitable finite element subspaces of Lagrange type satisfying the compatibility conditions are utilized for defining the Galerkin scheme. The error analysis and corresponding rates of convergence are also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号