首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new ether‐bridged aromatic dicarboxylic acid, 2′,5′‐bis(4‐carboxyphenoxy)‐p‐terphenyl ( 3 ), was synthesized by the aromatic fluoro‐displacement reaction of p‐fluorobenzonitrile with 2′,5′‐dihydroxy‐p‐terphenyl in the presence of potassium carbonate, followed by alkaline hydrolysis. A set of new aromatic polyamides containing ether and laterally attached p‐terphenyl units was synthesized by the direct phosphorylation polycondensation of diacid 3 with various aromatic diamines. The polymers were produced with high yields and moderately high inherent viscosities (0.44–0.79 dL/g). The polyamides derived from 3 and rigid diamines, such as p‐phenylenediamine and benzidine, and a structurally analogous diamine, 2′,5′‐bis(4‐aminophenoxy)‐p‐terphenyl, were semicrystalline and insoluble in organic solvents. The other polyamides were amorphous and organosoluble and could afford flexible and tough films via solution casting. These films exhibited good mechanical properties, with tensile strengths of 91–108 MPa, elongations to break of 6–17%, and initial moduli of 1.95–2.43 GPa. These polyamides showed glass‐transition temperatures between 193 and 252 °C. Most of the polymers did not show significant weight loss before 450 °C, as revealed by thermogravimetric analysis in nitrogen or in air. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4056–4062, 2004  相似文献   

2.
A series of polyisophthalamides and polyisophthalates having perfluorinated side chains were prepared from 5‐perfluoroalkylisophthaloyl dichlorides. The aromatic polyamides and polyarylates synthesized by conventional low temperature solution polycondensation and interfacial polycondensation, respectively, had inherent viscosities of 0.19 to 1.28 dL g−1 in yields of 65 to 100%. Solubilies of the resulting polymers were improved by incorporating nonafluorobutyl groups but not improved by incorporating heptadecafluorooctyl groups. Although the effect on the glass transition temperature (Tg) of incorporating perfluoroalkyl groups into the aromatic polyamides or polyarylate backbone is great, the incorporation maintained the thermal stability of the polymers. In spite of the rigid nature of perfluoroalkyl groups, Tgs were decreased by incorporating perfluoroalkyl groups. The value of the contact angle of water on the aromatic polyamides films gradually increased with incorporation of the perfluoroalkyl groups. On the other hand, the value of the contact angle remarkably increased when perfluoroalkyl groups were incorporated into polyarylates. The Owens γs were also calculated for some aromatic polyamides by measuring contact angles of diiodomethane on the polymer films. The γs were estimated at 23‐37 mN m−1 and about 10% of them were contributed by hydrogen bonding. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1135–1141, 1999  相似文献   

3.
A new carbazole‐derived, triphenylamine (TPA)‐containing aromatic dicarboxylic acid monomer, 4,4′‐dicarboxy‐4″‐(3,6‐di‐tert‐butylcarbazol‐9‐yl)TPA, was synthesized, and it led to a series of electroactive aromatic polyamides with main‐chain TPA and pendent 3,6‐bis(tert‐butyl)carbazole units by reacting it with various aromatic diamines via the phosphorylation polyamidation technique. The polyamides were amorphous with good solubility in many organic solvents and could be solution‐cast into flexible and strong films. They showed high glass‐transition temperatures (282–335 °C) and high thermal stability (10% weight loss temperatures >480 °C). The electroactive polymer films had well‐defined and reversible redox couples with good cycle stability in acetonitrile solutions. The polymer films also exhibited fluorescent and multielectrochromic behaviors. The anodically electrochromic polyamide films had moderate coloration efficiency (~100 cm2/C) and high optical contrast ratio of transmittance change (Δ%T) up to 47% at 813 nm and 48% at 414 nm for the green coloring. After hundreds of cyclic switches, the polymer films still retained good redox and electrochromic activity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.
New series aromatic polyamides with (carbazol‐9‐yl)triphenylamine units were synthesized from a newly synthesized diamine monomer, 4,4′‐diamino‐4″‐(3,6‐dimethoxycarbazol‐9‐yl) triphenylamine, and aromatic dicarboxylic acids via the phosphorylation polyamidation technique. These polyamides exhibit good solubility in many organic solvents and can be solution‐cast into flexible and strong films with high thermal stability. They show well‐defined and reversible redox couples during oxidative scanning, with a strong color change from colorless neutral form to yellowish green and blue oxidized forms at applied potentials scanning from 0.0 to 1.3 V. They show enhanced redox‐stability and electrochromic performance as compared to the corresponding analogs without methoxy substituents on the active sites of the carbazole unit. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 272–286  相似文献   

5.
A series of novel aromatic polyamides with pyrenylamine in the backbone were prepared from a newly synthesized dicarboxylic acid monomer, N,N‐di(4‐carboxyphenyl)‐1‐aminopyrene, and various aromatic diamines via the phosphorylation polyamidation technique. These polyamides were readily soluble in many organic solvents and could be solution‐cast into tough and amorphous films. They had useful levels of thermal stability with glass‐transition temperatures in the range of 276–342 °C and 10% weight loss temperatures in excess of 500 °C. The dilute N‐methyl‐2‐pyrrolidone (NMP) solutions of these polymers exhibited fluorescence maxima around 455–540 nm with quantum yields up to 56.9%. The polyamides also showed remarkable solvatochromism of the emission spectra. Their films showed reversible electrochemical oxidation and reduction accompanied by strong color changes from colorless neutral state to purple oxidized state and to yellow reduced state. The polyamide 4g containing the pyrenylamine units in both diacid and diamine sides exhibited easily accessible p‐ and n‐doped states, together with multicolored electrochromic behaviors. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
A new triphenylamine‐based aromatic dicarboxylic acid monomer, 4‐tert‐butyl‐4′,4″‐dicarboxytriphenylamine ( 2 ), was synthesized from the cesium fluoride mediated N,N‐diarylation reaction of 4‐tert‐butylaniline with 4‐fluorobenzonitrile and subsequent alkaline hydrolysis of the dinitrile intermediate. A series of six aromatic polyamides 4a‐4f with tert‐butyltriphenylamine groups was prepared from the newly synthesized dicarboxylic acid and various aromatic diamines. These polyamides were readily soluble in many organic solvents and could be solution‐cast into flexible and strong films. The glass‐transition temperatures of these polymers were in the range of 274–311 °C. These polymers exhibited strong UV‐vis absorption bands at 356–366 nm in NMP solution. Their photoluminescence spectra showed maximum bands around 433–466 nm in the blue region. Cyclic voltammograms of all the polyamides exhibited reversible oxidation redox couples in acetonitrile. The polyamide 4f, with tert‐butyltriphenylamine segment in both diacid and diamine residues, exhibited stable electrochromic characteristics with a color change from a colorless neutral form, through a green semioxidized form, to a deep purple fully oxidized form. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2798–2809, 2010  相似文献   

7.
New halogen‐substituted aromatic–aliphatic and wholly aromatic polyamides with high inherent viscosities were synthesized by the direct polycondensation of 5‐halo‐m‐phenylenediamines, where the halogens were Cl, Br, and I, with both aliphatic and aromatic dicarboxylic acids in N‐methyl‐2‐pyrrolidone with a mixture of triphenyl phosphite and pyridine as a condensing agent. The solubility of the halogen‐substituted polyamides was much higher than that of the parent polyamides derived from m‐phenylenediamine. The glass‐transition temperatures of the substituted aromatic–aliphatic polyamides increased in the order Cl < Br < I, whereas the temperatures of 10% weight loss in air decreased in the reverse order. The limiting oxygen index values, as an indication of flammability, increased for the substituted aromatic–aliphatic polyamides in the order Cl < Br < I. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3911–3918, 2000  相似文献   

8.
A series of novel aromatic diamines ( 2 – 4 ) containing the alkyl‐, aryl, or chloro‐substituted group of phthalazinone segments were synthesized via two synthetic steps starting from 4‐(3‐R‐4‐hydroxyphenyl)‐2,3‐phthalazinone‐1 (R = Ph, CH3, Cl). Three series of aromatic polyamides containing phthalazinone moieties were prepared through diamines 2 – 4 reacting with different aromatic dicarboxylic acids via a direct Yamazaki–Higashi phosphorylation polycondensation reaction. The resulting aromatic polyamides had inherent viscosities in the range of 0.40–0.76 dL/g. The thermal property of the polyamides was examined with DSC and thermogravimetric analysis. The glass‐transition temperatures of these polyamides ranged from 298 to 340 °C. The 10% mass‐loss temperature was above 405 °C under nitrogen. Structures of monomers 2 – 4 and the polymers were confirmed by Fourier transform infrared spectroscopy, 1H NMR, and mass spectrometry. Good solubility of these polymers in polar solvents such as N‐methylpyrrolidone, dimethylformamide, dimethylacetamide (DMAc), and m‐cresol was observed, and tough, flexible films were obtained from the polymer's DMAc solutions. The effect of the substituted group on the physical property of polymers was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2026–2030, 2004  相似文献   

9.
A new triphenylamine‐containing aromatic diamine monomer, N,N‐bis(4‐aminophenyl)‐N,N′‐bis(4‐tert‐butylphenyl)‐1,4‐phenylenediamine, was synthesized by an established synthetic procedure from readily available reagents. A novel family of electroactive polyamides with di‐tert‐butyl‐substituted N,N,N,N′‐tetraphenyl‐1,4‐phenylenediamine units were prepared via the phosphorylation polyamidation reactions of the newly synthesized diamine monomer with various aromatic or aliphatic dicarboxylic acids. All the polymers were amorphous with good solubility in many organic solvents, such as N‐methyl‐2‐pyrrolidinone (NMP) and N,N‐dimethylacetamide, and could be solution‐cast into tough and flexible polymer films. The polyamides derived from aromatic dicarboxylic acids had useful levels of thermal stability, with glass‐transition temperatures of 269–296 °C, 10% weight‐loss temperatures in excess of 544 °C, and char yields at 800 °C in nitrogen higher than 62%. The dilute solutions of these polyamides in NMP exhibited strong absorption bands centered at 316–342 nm and photoluminescence maxima around 362–465 nm in the violet‐blue region. The polyamides derived from aliphatic dicarboxylic acids were optically transparent in the visible region and fluoresced with a higher quantum yield compared with those derived from aromatic dicarboxylic acids. The hole‐transporting and electrochromic properties were examined by electrochemical and spectro‐electrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium‐tin oxide‐coated glass substrate exhibited two reversible oxidation redox couples at 0.57–0.60 V and 0.95–0.98 V versus Ag/AgCl in acetonitrile solution. The polyamide films revealed excellent elcterochemical and electrochromic stability, with a color change from a colorless or pale yellowish neutral form to green and blue oxidized forms at applied potentials ranging from 0.0 to 1.2 V. These anodically coloring polymeric materials showed interesting electrochromic properties, such as high coloration efficiency (CE = 216 cm2/C for the green coloring) and high contrast ratio of optical transmittance change (ΔT%) up to 64% at 424 nm and 59% at 983 nm for the green coloration, and 90% at 778 nm for the blue coloration. The electroactivity of the polymer remains intact even after cycling 500 times between its neutral and fully oxidized states. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2330–2343, 2009  相似文献   

10.
A series of rigid‐rod polyamides and polyimides containing p‐terphenyl or p‐quinquephenyl moieties in backbone as well as naphthyl pendent groups were synthesized from two new aromatic diamines. The polymers were characterized by inherent viscosity, elemental analysis, FT‐IR, 1H‐NMR, 13C‐NMR, X‐ray, differential scanning calorimetry (DSC), thermomechanical analysis (TMA), thermal gravimetric analysis (TGA), isothermal gravimetric analysis, and moisture absorption. All polymers were amorphous and displayed Tg values at 304–337°C. Polyamides dissolved upon heating in polar aprotic solvents containing LiCl as well as CCl3COOH, whereas polyimides were partially soluble in these solvents. No weight loss was observed up to 377–422°C in N2 and 355–397°C in air. The anaerobic char yields were 57–69% at 800°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 15–24, 1999  相似文献   

11.
A series of new aromatic polyamides having pendent naphthoxy groups were synthesized by the triphenyl phosphite‐activated polycondensation of (2‐naphthoxy)terephthalic acid (NOTPA) with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The diacid monomer NOTPA was prepared from the nitro displacement of dimethyl 2‐nitroterephthalate with the potassium naphthoxide of β‐naphthol, followed by base‐induced ester hydrolysis. All the resulting polymers were noncrystalline and readily soluble in aprotic polar solvents such as NMP and N,N‐dimethylacetamide. Almost all the polymers could be solution‐cast to tough, creasable amorphous films with good mechanical properties, the values of tensile strengths ranging from 90 to 124 MPa with initial moduli ranging from 1.72 to 2.51 GPa. Except for two examples, all the other polyamides displayed discernible glass transitions between 189 and 248 °C in the differential scanning calorimetric traces. These polyamides showed insignificant decomposition below 400 °C in nitrogen or air. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1781–1789, 2002  相似文献   

12.
A new 2,7‐bis(diphenylamino)naphthalene‐based diamine monomer, N,N′bis(4‐aminophenyl)‐N,N′bis(4‐methoxyphenyl)‐2,7‐naphthalenediamine, was synthesized and polymerized with various aromatic dicarboxylic acids via the phosphorylation polyamidation reaction leading to a new series of redox‐active and electrochromic aromatic polyamides. The polyamides exhibited high solubility in many polar aprotic solvents, good film‐forming ability, and high thermal stability. They also showed stable electrochemical stability and anodically green coloring when oxidized. The two arylamino centers showed a weak electronic interaction via the 2,7‐naphthalenediyl bridge, and thus they started to oxidize almost at the same time. No intervalence charge transfer (IVCT) absorption was observed during the oxidation processes of these polyamides. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1409–1421  相似文献   

13.
Thermoplastic and organic‐soluble aromatic polyamides containing both bulky triphenylethane units and flexible ether linkages were prepared directly from 1,1‐bis[4‐(4‐carboxyphenoxy)phenyl]‐1‐phenylethane ( III ) with various aromatic diamines or from 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenylethane ( V ) with various aromatic dicarboxylic diacids via triphenyl phosphite and pyridine. These polyamides had inherent viscosities ranging from 0.71 to 1.77 dL/g. All the polymers easily were dissolved in aprotic polar solvents such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide, and some even could be dissolved in less polar solvents such as tetrahydrofuran. The flexible and tough films cast from the polymer solutions possessed tensile strengths of 89 to 104 MPa. The polyamides were thermally stable up to 460°C in air or nitrogen. Glass‐transition temperatures of these polyamides were observed in a range of 179 to 268°C via differential scanning calorimetry or thermomechanical analysis. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 247–260, 2000  相似文献   

14.
Two series of novel fluorinated aromatic polyamides were prepared from 1,1‐bis[4‐(4‐carboxyphenoxy)phenyl]‐1‐phenyl‐2,2,2‐trifluoroethane with various aromatic diamines or from 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenyl‐2,2,2‐trifluoroethane with various aromatic dicarboxylic acids with the phosphorylation polyamidation technique. These polyamides had inherent viscosities ranging from 0.51 to 1.54 dL/g that corresponded to weight‐average and number‐average molecular weights (by gel permeation chromatography) of 36,200–80,000 and 17,200–64,300, respectively. All polymers were highly soluble in aprotic polar solvents, such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide, and some could even be dissolved in less‐polar solvents like tetrahydrofuran. The flexible and tough films cast from the polymer solutions possessed tensile strengths of 76–94 MPa and initial moduli of 1.70–2.22 GPa. Glass‐transition temperatures (Tg's) and softening temperatures of these polyamides were observed in the range of 185–268 °C by differential scanning calorimetry or thermomechanical analysis. Decomposition temperatures (Td's) for 10% weight loss all occurred above 500 °C in both nitrogen and air atmospheres. Almost all the fluorinated polyamides displayed relatively higher Tg and Td values than the corresponding nonfluorinated analogues. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 420–431, 2003  相似文献   

15.
Two novel isophthalic diacid‐based monomers have been synthesized by inclusion in ring position 5 of a functionalized benzoylamine moiety. The functionalization includes a 12‐crown‐4 ether group fused with the benzene subunit and a dipodand substructure, formally a disubstitution of the benzene ring, with two sequences of ethyl‐terminated ethylene oxide units, which represent the open‐chain counterpart of the alicylic crown moiety. The polycondensation of the two diacids with five aromatic diamines yielded 10 new polyamides with crown or podand pendant substructures. The polyamides had previously been chemically characterized by NMR, IR, and elemental analysis. The polymers showed high glass transition temperatures of up to 349 °C, good thermal stability (Tdonset, N2 ≈ 400 °C), and improved solubility in organic solvents. The presence of acyclic or alicyclic oxyethylene sequences as crown ether or podand substructures and an additional amide side group per repeat unit made the polymers essentially amorphous and improved their water absorption ability in comparison with nonsubstituted polyamides. Water uptake values as high as 12% were observed at 65% relative humidity. All the polyamides showed a good film‐forming ability, and the mechanical properties of these films are considered to be satisfactory for experimental aromatic polyamides. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2270–2281, 2006  相似文献   

16.
Aromatic polyamides based on a novel bis(ether‐carboxylic acid) were synthesized by the direct phosphorylation condensation method. 1,4‐Bis(4‐carboxyphenoxy)‐2,5‐di‐tert‐butylbenzene was combined with various diamines containing flexible linkages and side substituents to render a set of eight novel aromatic polyamides. The polymers were produced with high yields and moderate to high inherent viscosities (0.49–1.32 dL/g) that corresponded to weight‐average and number‐average molecular weights (by gel permeation chromatography) of 31,000–80,000 and 19,000–50,000, respectively. Except for a single example, the polyamides were essentially amorphous and soluble in a variety of common solvents such as cyclohexanone, dioxane, and tetrahydrofuran. They showed glass‐transition temperatures of 250–295 °C (by differential scanning calorimetry) and 10% weight loss temperatures above 460 °C, as revealed by thermogravimetric analysis in nitrogen. Polymer films, obtained by casting from N,N‐dimethylacetamide solutions, exhibited good mechanical properties, with tensile strengths of 83–111 MPa and tensile moduli of 2.0–2.2 GPa. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 475–485, 2001  相似文献   

17.
A novel morpholinyl‐substituted, triphenylamine‐based diamine monomer, namely 4,4′‐diamino‐4″‐(4‐morpholinyl)triphenylamine, was synthesized and polymerized with various aromatic dicarboxylic acids via the phosphorylation polyamidation reaction leading to a series of electroactive aromatic polyamides (aramids). All aramids were readily soluble in polar organic solvents and could be solution cast into tough and flexible films with high thermal stability. Cyclic voltammograms of the aramid films on the indium‐tin oxide‐coated glass substrate exhibited a pair of reversible oxidation waves with very low onset potentials of 0.36 − 0.41 V (vs. Ag/AgCl) in acetonitrile solution. The polymer films showed reversible electrochemical oxidation accompanied by strong color changes with high coloration efficiency, high contrast ratio, and rapid switching time. The optical transmittance change (Δ%T) at 650 nm between the neutral state and the fully oxidized state is up to 90%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1289–1298  相似文献   

18.
A rigid diamine was synthesized from myo‐inositol, a naturally occurring cyclic hexaol, and used as a monomer to synthesize polyamides. myo‐Inositol was treated with 1,1‐dimethoxycyclohexane to yield a bisketal bearing two hydroxyl groups, and from this bisketal, the target diamine was synthesized in three steps: (1) derivation of the diol into the corresponding bistriflate, (2) nucleophilic substitution of the bistriflate with sodium azide yielding a diazide, and (3) reduction of the diazide to the target diamine. The target diamine readily underwent polycondensation with dicarboxylic acid chloride in solution. The resulting polyamides, whose main chain inherited the rigid 5‐6‐5 system from the diamine monomers, have high glass transition temperatures. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3436–3443  相似文献   

19.
A set of new aromatic polyamides were synthesized by the direct phosphorylation condensation of 4‐(1‐adamantyl)‐1,3‐bis‐(4‐aminophenoxy)benzene with various diacids. The polymers were produced with high yields and moderate to high inherent viscosities (0.43–1.03 dL/g), and the weight‐average molecular weights and number‐average molecular weights, determined by gel permeation chromatography, were in the range of 37,000–93,000 and 12,000–59,000, respectively. The polyamides were essentially amorphous and soluble in a variety of solvents such as N,N‐dimethylacetamide (DMAc), cyclohexanone, and tetrahydrofuran. They showed glass‐transition temperatures in the range of 240–300 °C (differential scanning calorimetry) and 10% weight‐loss temperatures over 450 °C, as revealed by thermogravimetric analysis in nitrogen. All the polymers gave strong films via casting from DMAc solutions, and these films exhibited good mechanical properties, with tensile strengths in the range of 77–92 MPa and tensile moduli between 1.5 and 2.5 GPa. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1014–1023, 2000  相似文献   

20.
A new triphenylamine‐containing aromatic diamine, N, N′‐bis(4‐aminophenyl)‐N, N′‐diphenyl‐1,4‐phenylenediamine, was prepared by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 4‐fluoronitrobenzene, followed by catalytic reduction. A series of novel aromatic polyamides with triphenylamine units were prepared from the diamine and various aromatic dicarboxylic acids or their diacid chlorides via the direct phosphorylation polycondensation or low‐temperature solution polycondensation. All the polyamides were amorphous and readily soluble in many organic solvents such as N, N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone. These polymers could be solution cast into transparent, tough, and flexible films with good mechanical properties. They had useful levels of thermal stability associated with relatively high glass‐transition temperatures (257–287 °C), 10% weight‐loss temperatures in excess of 550 °C, and char yields at 800 °C in nitrogen higher than 72%. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2810–2818, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号