首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of soluble alternating poly(fluorene)‐based copolymers containing electron‐transporting 1,3,4‐oxadiazole (OXD) and hole‐transporting carbazole pendants attached to the C‐9 position of fluorene units by long alkyl spacers were synthesized. These copolymers possess mesogenic and nonmesogenic pendants attached to a rigid mesogenic poly(fluorene) (PF) backbone. All these polymers exhibit glass‐forming liquid crystalline properties, including the nematic and smectic A (SmA) phases, and reveal much wider mesophasic temperature ranges than that of PF. The thermal properties and mesomorphism of these conjugated polymers are mainly affected by the nature of these pendants, and thus the mesophasic temperature ranges and glass‐forming properties are greatly enhanced by introducing the OXD pendants. In addition, the tendencies of crystallization and aggregation of PF are also suppressed by introducing the OXD pendants. A single layer device with P4 as an emitter shows a turn‐on voltage of 5 V and a bright luminescence of 2694 cd/m2 at 11 V with a power efficiency of 1.28 cd/A at 100 mA/cm2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2700–2711, 2005  相似文献   

2.
The structures and properties of liquid‐crystalline polymers containing laterally attached p‐terphenyl and p‐pentaphenyl have been studied. In contrast to their mesogenic groups, that is, p‐terphenyl and p‐pentaphenyl, the polymers have much lower crystallinity and also lower nematic‐to‐isotropic transition temperatures. The significant depression in crystallinity can be attributed to flexible chain segments laterally attached to the oligo p‐phenylene rods, which prevent close packing of the rods and thus disrupt the crystallization. The destabilization of the liquid‐crystalline phase is due to the diluting effect of the flexible polymer backbones; that is, the concentration of the mesogenic groups is reduced. The polymer containing p‐pentaphenyl can still exhibit good solubility in common solvents and emit light at about 402 nm in the solvent tetrahydrofuran. In the solid state, the emission redshifts to 418 nm, which is fairly close to the blue‐light emission. An interdigitated packing structure of mesogenic groups has been proposed to represent the structure of the polymer in the oriented state. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3394–3402, 2005  相似文献   

3.
Porphyrin‐embedded high molecular weight dendronized polymers up to fourth generation have been synthesized by Suzuki polycondensation of Fréchet‐type dendritic dibromo macromonomers and porphyrin diboronic pinacol ester. Higher generation lateral dendritic wedges not only endow the dendronized polymers with good solubility in commonly used organic solvents, but also prevent planar porphyrins and conjugated polymer backbones from aggregating by their “site isolation” effect. This type of porphyrin‐embedded dendronized polymers can be used as saturated red light‐emitting materials. With the increase of the generation of the lateral dendrons, the quantum yields of the dendronized polymers also gradually increased. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4030–4037, 2008  相似文献   

4.
We have synthesized a novel carrier‐transporting copolymer and a nonconjugated light‐emitting polymer. The carrier‐transporting copolymer has a triphenylamine moiety as a hole‐transporting unit and a triazine moiety as an electron‐transporting unit, both of which are located in the polymer side chain. The nonconjugated light‐emitting polymer has a perylene moiety, which acts as an emitting unit in the polymer side chain. These polymers are very soluble in most organic solvents, such as monochlorobenzene, tetrahydrofuran, chloroform, and benzene. A single‐layered electroluminescent device consisting of ITO/copolymer and emitting‐material 4‐(dicyanomethylene)‐2‐methyl‐6‐(4‐dimethylaminostyryl)‐4H‐pyran (DCM) or light‐emitting polymer)/Al mixtures exhibits maximum external quantum efficiency when the concentration of the emitting material is 30 wt %. The device emits red or blue light according to the emitting material. When CsF is used as the electron‐injecting material, the drive voltage decreases drastically to 7 V, and the highest quantum efficiency is 0.5%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2733–2743, 2003  相似文献   

5.
To study the influence of a blue‐emitting iridium complex pendant on the optoelectronic properties of its 2,7‐polyfluorene (PF) derivatives with the carbazole and oxadiazole pendants, a class of 2,7‐PF derivatives containing carbazole, oxadiazole, and/without the cyclometalated iridium complex pendants in the C‐9 positions of fluorene unit were synthesized. Their thermal, photophysical, electrochemical, and electroluminescent (EL) properties were investigated. Among these 2,7‐PF derivatives (P 1 –P 4 ), P 2 and P 3 exhibited higher photoluminescence efficiency in dichloromethane and better EL properties in the single‐emissive‐layer polymer light‐emitting devices. The highest brightness of 3888 cd/m2 and the maximum current efficiency of 2.9 cd/A were obtained in the P 2 ‐ and P 3 ‐based devices, respectively. The maximum brightness and efficiency levels were 1.7 and 2.1 times, respectively, higher than the corresponding levels from the parent 2,7‐PF derivative (P 1 )‐based devices. Our work indicated that EL properties of 2,7‐PF derivatives can be improved by introducing the blue‐emitting iridium complex into the alkyl side chain of fluorine unit as pendant. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Novel blue‐emitting germanium‐containing poly(p‐phenylenevinylene) (PPV) derivatives with well‐defined conjugation lengths were synthesized via Wittig‐condensation polymerizations. The polymers can be color‐tuned by the introduction of various chromophores into the PPV‐based polymer backbones. The photoluminescence (PL) spectra of the polymers, GePVK (containing carbazole moieties), GeMEH (containing dialkoxybenzene moieties), and GePTH (containing phenothiazine moieties), were found to exhibit blue, greenish blue, and green emissions, respectively. GePTH produces more red‐shifted emission than GeMEH and GEPVK, resulting in green emission, and the solution and solid state PL spectra of GePVK consist of almost blue emission. The electroluminescence spectra of GeMEH and GePTH contain yellowy green and yellow colors, respectively. Interestingly, GePVK exhibits white emission with CIE coordinates of (0.33, 0.37) due to electroplex emission in the light‐emitting diodes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 979–988, 2008  相似文献   

7.
A novel liquid‐crystalline epoxy resin combining biphenyl and aromatic ester‐type mesogenic units, diglycidyl ether of 4,4′‐bis(4‐hydroxybenzoyloxy)‐3,3′,5,5′‐tetramethyl biphenyl, was synthesized. Its spectroscopic structure, thermal properties, and phase structures were investigated with NMR, differential scanning calorimetry (DSC), and polarized light microscopy (PLM), respectively. The curing agent, diaminodiphenylsulfone, was chosen to investigate the curing behavior by means of DSC and PLM during isothermal and nonisothermal processes. Only one exothermal peak appeared in the isothermal DSC curves. Birefringence was also observed during the curing processes and preserved after postcuring. Compared with short rigid‐rod and flexible epoxies, the cured liquid‐crystalline epoxy resin that was obtained displayed special thermal stability according to thermogravimetric analysis because of its long rigid‐rod mesogenic unit and bulky methyl groups. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 727–735, 2007  相似文献   

8.
Two new poly(p‐phenylenevinylene) derivatives were prepared by Heck coupling. They contained alternating conjugated segments on the basis of p‐distyrylbenzene and flexible nonconjugated spacers. The synthesized polymers P1 and P2 carried two m‐terphenyl of four tertbutyl pendants, respectively, per repeat unit. Both polymers were amorphous and exhibited satisfactory thermal stability. Polymer P1 displayed a limited solubility in common organic solvents, whereas P2 dissolved readily in these solvents. The glass‐transition temperature values were 128 °C for P1 and 37 °C for P2 . The polymers emitted blue or violet‐blue light with photoluminescent maxima at about 445 and 460 nm for solutions and thin films, respectively. The bulky pendants reduced their tendency to form aggregates. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1091–1098, 2003  相似文献   

9.
New poly(phenylene vinylene) derivatives with a 5‐diphenylamino‐1,3‐phenylene linkage (including polymers 2 , 3 , and 5 ) have been synthesized to improve the charge‐injection properties. These polymers are highly photoluminescent with fluorescent quantum yields as high as 76% in tetrahydrofuran solutions. With effective π‐conjugation interruption at adjacent m‐phenylene units, chromophores of different conjugation lengths can be incorporated into the polymer chain in a controllable manner. In polymer 2 , the structural regularity leads to an isolated, well‐defined emitting chromophore. Isomeric polymer 3 of a random chain sequence, however, allows the effective emitting chromophores to be joined in sequence by sharing a common m‐phenylene linkage (as shown in a molecular fragment). Double‐layer light‐emitting‐diode devices using 2 , 3 , and 5 as emitting layers have turn‐on voltages of about 3.5 V and produce blue‐green emissions with peaks at 493, 492, and 482 nm and external quantum efficiencies up to 1.42, 0.98, and 1.53%, respectively. In comparison with a light‐emitting diode using 2 , a device using 3 shows improved charge injection and displays increased brightness by a factor of ~3 to 1400 cd/m2 at an 8‐V bias. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2307–2315, 2006  相似文献   

10.
A mesogenic‐type curing agent was synthesized to introduce a mesogenic group not only into epoxy resin backbones but also into the crosslink units. In the mesogenic curing agent system, the domain size became larger, and the network arrangement in each domain existed to a greater extent than that in a system cured with the ordinary diamine curing system according to the evidence from polarized optical micrographs and polarized Fourier transform infrared mapping measurements. Moreover, the fracture toughness of the system was considerably improved. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2486–2494, 2006  相似文献   

11.
We report on photocrosslinkable hole‐transport polymers and their use as photodefinable hole‐transport layers in organic light‐emitting diodes. The polymers were obtained by copolymerization of bis(diarylamino)biphenyl‐based acrylate monomers with cinnamate‐functionalized acrylate moieties. Polymers with a range of redox potentials were obtained by varying the substitution patterns of the bis(diarylamino)biphenyl units. The 2 + 2 cycloaddition of the cinnamate moieties following UV irradiation renders the material insoluble. This allows for patterning of the polymer and simultaneously enables the fabrication of multilayer structures from solution. Hole mobilities were measured in these copolymers with the time‐of‐flight technique. Their performance as hole‐transport layers in light‐emitting diodes, with tris(8‐hydroxyquinolinato)aluminum as the emitter and electron‐transport layer, is evaluated. Electroluminescent devices with multiple hole‐transport layers having different ionization potentials were fabricated from solution, and the quantum efficiency of these devices was greater than that for devices based on a single hole‐transport layer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2726–2732, 2003  相似文献   

12.
Three families of fluorene–oxadiazole‐based polymers with confinement moieties have successfully been prepared by the two‐step method for polyoxadiazole synthesis. These polymers show good solubility in common organic solvents, high thermal stability, and strong violet and blue photoluminescence in solution and as films, respectively. Their low‐lying highest occupied molecular orbital/lowest unoccupied molecular orbital energy levels originate from the electron deficiency of an oxadiazole moiety, and this suggests that they may be useful for blue‐emitting and electron‐transport/hole‐blocking layers in electroluminescent devices. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 674–683, 2003  相似文献   

13.
Two series of vinyl‐terminated, side‐chain liquid‐crystalline polyethers containing 4,4′‐biphenyl and 2,6‐naphthalene moieties as mesogenic cores with several contents of vinyl crosslinkable groups were synthesized by chemically modifying poly(epichlorohydrin) with mixtures of saturated and vinyl‐terminated mesogenic acids. In most cases the degree of modification was over 90%. The polymers were characterized by chlorine analysis, IR and 1H and 13C NMR spectroscopies, viscometry, size exclusion chromatography/multi‐angle laser light scattering, and thermogravimetric analysis. The liquid‐crystal behavior of all the synthesized polymers was examined by differential scanning calorimetry, polarized optical microscopy (POM), and X‐ray diffraction on mechanically oriented samples. The crosslinking of most polymers was done by peroxide‐type initiators, which generally led to liquid‐crystal elastomers. The mesophase organization was maintained on the crosslinked materials, as confirmed by POM and X‐ray diffraction. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3384–3399, 2003  相似文献   

14.
New white polymeric light‐emitting diodes from phosphorescent single polymer systems have been developed using a blue‐light‐emitting fluorene monomer copolymerized with a red‐light‐emitting phosphorescent dye, and end‐capped with a green‐light‐emission dye. All of the copolymers have good thermal stability with 5% weight loss temperatures at 380–413 °C and glass transition temperatures at 75–137 °C. We obtained white‐light‐emission devices by adjusting the molar ratio of the comonomers with a structure of indium tin oxide/poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonic acid)/polyvinylcarbazole (PVK)/emission layer/Ca/Ag. The highest brightness in such a device configuration is 300 cd/m2 at a current density of 2900 A/m2 with high white color quality (Commission Internationale de l'Eclairage (CIE) coordinates of (0.33, 0.34)). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 464–472, 2008  相似文献   

15.
Highly organic soluble Ir(III) complexes with 9‐(6‐phenyl‐pyridin‐3‐ylmethyl)‐9H‐carbazole were simply synthesized, and the solubility of the new complex was significantly improved when compared with the conventional green‐emitting Ir(ppy)3. Since a carbazole group is tethered through a nonconjugated methylene spacer, the photophysical properties of new complexes are almost identical with those of conventional Ir(ppy)3. The pure complexes were utilized to prepare electrophosphorescent polymer light‐emitting diodes (PLEDs). The device performances were observed to be relatively better or comparable with those of Ir(ppy)3 based poly(N‐vinylcarbazole) systems. The integration of rigid hole‐transporting carbazole and phosphorescent complex provides a new route to design highly efficient solution‐processable complex for electrophosphorescent PLED applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7419–7428, 2008  相似文献   

16.
New polymers for second‐order nonlinear optical (NLO) applications were synthesized and characterized. They were distinguished by the presence of chromophore groups, with various molecular hyperpolarizability values, used as pendants on substantially rigid backbones. The polymers were prepared through the reaction of tolylene‐2,4‐diisocyanate, or a suitable alkyloxyphthaloyl dichloride, with the N,N‐diethanol‐4‐(phenyl) group azo‐linked to a nitrofluorenone, nitrostilbene, nitrooxadiazole, or nitrothiadiazole moiety. The polymers exhibited good thermal stability, high glass‐transition temperatures, and an absence of crystallinity. The second‐order NLO properties of thin, transparent poled films, prepared by spin coating and thermal corona poling, were investigated for some of the polymers. The second harmonic coefficients, ranging between 18 and 25 pm/V, depended more on the alignment of the chromophore groups along the direction of the poling field than on their molecular hyperpolarizability. The temporal stability of the NLO properties of the polymers was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3013–3022, 2004  相似文献   

17.
Series of poly(p‐phenylene)s (PPPs) containing terphenyl mesogenic pendants with cyano and methoxy terminal groups by flexible ? COO(CH2)6O? bridge [ P(CN) and P(OCH3) ] are synthesized through Yamamoto polycondensation with Ni‐based complex catalysts. The effects of the structural variation on their properties, especially their mesomorphism, ultraviolet–visible (UV), and photoluminescence behaviors, are studied. All of the polymers are stable, losing little of their weights when heated to ≥340 °C. The polymers show good solubility and can be dissolved in common solvents. P(CN) with cyano terminal group shows enantiotropic SmAd phase with bilayer packing arrangement, while P(OCH3) with methoxy terminal group readily forms nematic and SmAd phase when heated and cooled. Photoexcitation of their solutions induces strong blue light emission. Compared with P(OCH3) , the light‐emitting bands of polymer P(CN) is slightly redshifted to 428 nm and the emission intensity of P(CN) is much stronger, due to the existence of donor–acceptor pairs. More interestingly, both of the polymers exhibit obvious Cotton effect on the CD spectra, resulting from the predominant screw sense of the backbone. This indicates that the bulky mesogenic pendant orientating around the backbone will force the main chain with helical conformation in the long region due to steric crowdedness. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4723–4735, 2009  相似文献   

18.
Novel epoxy‐terminated monomers based on imine groups were synthesized and their mesogenic properties studied. Aliphatic spacers of different lengths were introduced between the rigid unit and the glycidylic group, and their liquid‐crystalline behavior was examined. They were reacted with primary aromatic diamines inside a magnetic field so that the formation of anisotropic networks could be investigated. The influence of curing conditions and the structure of monomers and amines on the formation of liquid‐crystal thermosets were investigated. Thermosets with locked nematic textures were obtained in all cases. The influence of a 7.1 T magnetic field on the macroscopic orientation of these materials was studied, and mechanical properties of the resulting networks were evaluated by dynamic mechanical analysis. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1–12, 2003  相似文献   

19.
Increasing the length of an alkyl side chain on a rigid polynorbornene (PNB) backbone is shown to decrease the glass‐transition temperature of the resultant polymer, decrease the density of the bulk polymer, decrease the number and average free‐volume element size present, and decrease the permeability of gases through the polymer. Methyl‐, butyl‐, and hexyl‐substituted PNBs were investigated. Experimental results were compared with predictions based on molecular modeling. By using models that provided good agreement between the experimental and simulated wide‐angle diffraction patterns, the distributions of free‐volume elements were predicted. These predictions clearly indicate that the number of large free‐volume elements decreases as the length of the side chain increases, suggesting that the flexible aliphatic side chains can be largely accommodated within the free volume between the rigid PNB backbones. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 215–233, 2006  相似文献   

20.
A soluble cyano‐substituted poly[(1,3‐phenylene vinylene)‐alt‐(1,4‐phenylene vinylene)] derivative ( 9 ) was synthesized and characterized. Comparison between 9 and its model compound ( 10 ) showed that the chromophore in 9 remained to be well defined as a result of a π‐conjugation interruption at adjacent m‐phenylene units. The attachment of a cyano substituent only at the β position of the vinylene allowed the maximum electronic impact of the cyano group on the optical properties of the poly(p‐phenylene vinylene) material. At a low temperature (?108 or ?198 °C), the vibronic structures of 9 and 10 were partially resolved. The absorption and emission spectra of a film of 9 were less temperature‐dependent than those of a film of 10 , indicating that the former had a lower tendency to aggregate. A light‐emitting diode (LED) based on 9 emitted yellow light (λmax ≈ 578 nm) with an external quantum efficiency of 0.03%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3149–3158, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号