首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A new series of nitro‐substituted bis(imino)pyridine ligands {2,6‐bis[1‐(2‐methyl‐4‐nitrophenylimino)ethyl]pyridine, 2,6‐bis[1‐(4‐nitrophenylimino)ethyl]pyridine, (1‐{6‐[1‐(4‐nitro‐phenylimino)‐ethyl]‐pyridin‐2‐yl}‐ethylidene)‐(2,4,6‐trimethyl‐phenyl)‐amine, and 2,6‐bis[1‐(2‐methyl‐3‐nitrophenylimino)ethyl]pyridine} and their corresponding Fe(II) complexes [{p‐NO2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐ Me? p‐NO2}FeCl2 ( 10 ), L2FeCl2 ( 11 ), {m‐NO2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? m‐NO2}FeCl2 ( 12 ), and {p‐NO2? Ph? N?C(Me)? Py? C(Me)?N? Mes}FeCl2 ( 14 )] were synthesized. According to X‐ray analysis, there were shortenings of the axial Fe? N bond lengths (up to 0.014 Å) in para‐nitro‐substituted complex 10 and (up to 0.015 Å) in meta‐nitro‐substituted complex 12 versus the Fe(II) complex without nitro groups [{o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me}FeCl2 ( 1 )]. Complexes 10 , 12 , and 14 afforded very active catalysts for the production of α‐olefins and were more temperature‐stable and had longer lifetimes than parent non‐nitro‐substituted Fe(II) complex 1 . The reaction between FeCl2 and a sterically less hindered ligand [p‐NO2? Ph? N?C(Me)? Py? C(Me)?N? Ph? p‐NO2] resulted in the formation of octahedral complex 11 . A para‐dialkylamino‐substituted bis(imino)pyridine ligand [p‐NEt2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? p‐NEt2] and the corresponding Fe(II) complex [{p‐NEt2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? p‐NEt2}FeCl2 ( 16 )] were synthesized to evaluate the effect of enhanced electron donation of the ligand on the catalytic performance. According to X‐ray analysis, there was a shortening (up to 0.043 Å) of the axial Fe? N bond lengths in para‐diethylamino‐substituted complex 16 in comparison with parent Fe(II) complex 1 . © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2615–2635, 2006  相似文献   

2.
A new family of t‐butyl substituted chromium(III) chloride complexes ( Cr1 – Cr6 ), bearing 2‐(1‐(2,6‐dibenzhydryl‐4‐t‐butylphenylimino)ethyl)‐6‐(1‐(arylimino)ethyl)pyridine (aryl = 2,6‐Me2C6H3 Cr1 , 2,6‐Et2C6H3 Cr2 , 2,6‐i‐Pr2C6H3 Cr3 , 2,4,6‐Me3C6H2 Cr4 and 2,6‐Et2‐4‐MeC6H2 Cr5 ) or 2,6‐bis(1‐(2,6‐dibenzhydryl‐4‐t‐butylphenylimino)ethyl)pyridine ( Cr6 ), has been synthesized by the reaction of CrCl3·6H2O in good yield with the corresponding ligands ( L1 – L6 ), respectively. The molecular structures of Cr2 and Cr6 were characterized by X‐ray diffraction highlighted a distorted octahedral geometry with the coordinated N,N,N ligand and three bonded chlorides around the metal center. On activation with modified methylaluminoxane or triisobutyl aluminum, most of the chromium precatalysts exhibit good activities toward ethylene polymerization and produce linear polyethylenes with high‐molecular weight. In addition, an in‐depth catalytic evaluation of Cr2 was conducted to investigate how cocatalyst type and amount, reaction temperature, and run time affect the catalytic activities and polymer properties. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1049–1058  相似文献   

3.
The homopolymerization of methyl methacrylate was investigated with bis(salicylaldiminate)nickel(II) complexes, such as bis[3,5‐dinitro‐N(2,6‐diisopropylphenyl)salicylaldiminate]nickel(II) ( IIIa ) and bis[3,5‐dinitro‐N(phenyl)salicylaldiminate]nickel(II) ( IIIb ), and with methylaluminoxane (MAO) as an activator. In particular, the effect of the Al/Ni molar ratio on the catalytic activity and on the properties of the resulting poly(methyl methacrylate) (PMMA) was checked. The maximum activity was ascertained when an Al/Ni molar ratio equal to about 100 was used. However, the productivity of the catalytic systems was rather low. When the IIIa /MAO catalytic system was prepared under an ethylene atmosphere, an extremely high activity was observed, a productivity value of up to around 150,000 g of PMMA/(mol of Ni × h) being obtained, the highest ever found with nickel‐based catalysts. No appreciable presence of ethylene counits in the polymeric products was also ascertained. When the IIIb /MAO system was used, similar results were found, and high molecular weight PMMAs were obtained, despite the absence of bulky isopropyl substituents in positions ortho and ortho′ to the N‐aryl moiety of the salicylaldiminate ligand. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2117–2124, 2003  相似文献   

4.
The catalytic amount of inorganic bases (i.e., NaOH, Na3PO4, NaHCO3, and Na2CO3) and organic bases such as pyridine and triethylamine was used as the additives in an iron‐mediated atom transfer radical polymerization with activators generated by electron transfer (AGET ATRP) of a polar monomer methyl methacrylate (MMA) using FeCl3·6H2O as the catalyst, ethyl 2‐bromoisobutyrate (EBiB) as the initiator, ascorbic acid (AsAc) as the reducing agent, and tetrabutylammonium bromide (TBABr) as the ligand. All these bases can result in dual enhancement of polymerization rate and controllability over molecular weight while keeping low Mw/Mn values (<1.3) for the resultant polymers. For example, the polymerization rate of AGET ATRP with a molar ratio of [MMA]0/[EBiB]0/[FeCl3·6H2O]0/[TBABr]0/[AsAc]0/[NaOH]0 = 500/1/1/2/2/1.5 using NaOH as the additives was more than two times of that without NaOH. The nature of “living”/controlled free radical polymerization in the presence of base was confirmed by chain‐extension experiments. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Two novel tridentate ligands of 2,6‐bis‐[l‐(2,6‐dibromophenylimino) ethyl] pyridine (L1) and2‐acetyl‐6‐[1‐(2,6‐dibromophenylimino) ethyl] pyridine (L2) have been synthesized. The iron(II) complex of L1 and L2 has been characterized with the crystal structure of [Fe(L1)(L2)]2+ [FeCl4]2 CH2Cl2 [monoclinic, P21 (#11), a = 1.0562(4), b = 2.0928(4), c = 1.2914(2) nm, β = 100.12°, V = 2.810(1) nm3 Dc = 1.879 g/cm3 and Z = 2].  相似文献   

6.
Aldimine 2,6-bis[(imino)methyl]pyridine iron(II) (1, 4, and 6) and cobalt(II) (3 and 5) complexes bearing bulky cycloaliphatic (bornyl and myrtanyl) or aromatic (naphthyl) terminal groups have been applied successfully, after activation with methyl aluminoxane (MAO), as catalysts for the polymerization of tert-butylacrylate. For comparison reasons, complex 2 that contains the ketimine ligand, 2,6-bis[(−)-cis-myrtanylimino)ethyl]pyridine (BMEP), has also been utilized. All studied complexes showed moderate polymerization activities, and they produced high molar mass syndiorich-atactic polymers. Surprisingly, the aldimine-based catalyst systems showed comparable activities compared with the corresponding ketimine complex (2), and they produced high molar mass polymers. In addition, complexes with bulky terminal cycloaliphatic substituents on the tridentate aldimine ligands showed higher polymerization activity compared with the aromatic ones (6). Polymerization activity and polymer molar masses are dependent on the ligand framework.  相似文献   

7.
Through immobilization of two iron‐based complexes, [((2,6‐MePh)N = C(Me))2C5H3N]FeCl2 ( 1 ) and [((2,6‐iPrPh)N = C(Me))2C5H3N]FeCl2 ( 2 ), on SiO2 pretreated with tetraethylaluminoxane (TEAO), two supported iron‐based catalysts, 1 /TEAO/SiO2 ( 3 ) and 2 /TEAO/SiO2 ( 4 ), were prepared. These two supported catalysts 3 and 4 could be used to catalyze ethylene polymerization with moderate polymerization activity and prepare linear high‐density polyethylene with bimodal molecular weight distribution (MWD). It was demonstrated that immobilization of catalyst could significantly improve molecular weight (MW) of high‐MW fraction of the resultant polyethylene, as well as maintain bimodal MWD of polyethylene produced by the corresponding homogeneous catalysts. Such bimodal MWD of polyethylene produced by supported iron‐based catalysts could be well tailored by varying polymerization conditions, such as ethylene pressure and molar ratio of Al to Fe. It has been proven that TEAO is an efficient activator for both homogeneous and heterogeneous iron‐based catalysts for producing polyethylene with bimodal MWD. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5662–5669, 2004  相似文献   

8.
The unsymmetric precursor ethyl 6-acetylpyridine-2-carboxylate (4) was synthesized from 2,6-dimethylpyridine (1). On the basis of this precursor, a new mono(imino)pyridine ligand (5) and the corresponding Co(Ⅱ) complex {2-carbethoxy-6-[1-[(2,6-diethylphenyl)imino]ethyl]pyridine}CoCl2 (6) were prepared. The crystal structure of complex indicates that the 2-carbethoxy-6-iminopyridine is coordinated to the cobalt as a tridentate ligand using [N, N, O] atoms, and the coordination geometry of the central cobalt is a distorted trigonal bipyramid, with the pyridyl nitrogen atom and the two chlorine atoms forming the equatorial plane. Being applied to the ethylene oligomedzation, this cobalt complex shows catalytic activity of 1.820× 10^4 g/mol-Cooh at 101325 Pa of ethylene at 15.5℃ for 1 h, when 1000 equiv, of methylaluminoxane (MAO) is employed as the cocatalyst.  相似文献   

9.
The synthesis and characterization of aluminum alkoxide and alkyl complexes stabilized by piperazidine‐bridged bis(phenolate) ligands are described. Treatment of ligand precursors H2[ONNO]1 {H2[ONNO]1=1,4‐bis(2‐hydroxy‐3‐tert‐butyl‐5‐methylbenzyl)piperazidine} and H2[ONNO]2 {H2[ONNO]2=1,4‐bis(2‐hydroxy‐3,5‐di‐tert‐butylbenzyl)piperazidine} with AlEt2(OCH2Ph) and AlEt2(OPr‐i), which were generated in situ by the reactions of AlEt3 with equivalent of the corresponding alcohols, in a 1:1 molar ratio in THF gave the corresponding aluminum alkoxide complexes [ONNO]1Al(OCH2Ph) ( 1 ) and [ONNO]2Al(OPr‐i) ( 2 ), respectively. The reaction of H2[ONNO]1 with AlEt2(OCH2Ph) in a 1:2 molar ratio in THF afforded a mixture of monometallic aluminum ethyl complex [ONNO]1AlEt ( 3 ) and complex 1 , which can be isolated by stepwise crystallization. Similarly, H2[ONNO]2 reacted with AlEt2(OPr‐i) in a 1:2 molar ratio in THF to give a mixture of aluminum ethyl complex [ONNO]2AlEt ( 4 ) and complex 2 . Complexes 1 and 2 were also available via treatment of complexes 3 and 4 with 1 equiv. of benzyl alcohol and isopropyl alcohol, respectively. All of these complexes were fully characterized including X‐ray structural determination. It was found that complexes 1 to 4 can initiate the ring‐opening polymerization of ε‐caprolactone, and complexes 1 and 2 showed higher catalytic activity in comparison with complexes 3 and 4 .  相似文献   

10.
The effects of polymerization temperature, polymerization time, ethylene and hydrogen concentration, and effect of comonomers (hexene‐1, propylene) on the activity of supported catalyst of composition LFeCl2/MgCl2‐Al(i‐Bu)3 (L = 2,6‐bis[1‐(2,6‐dimethylphenylimino)ethyl] pyridyl) and polymer characteristics (molecular weight (MW), molecular‐weight distribution (MWD), molecular structure) have been studied. Effective activation energy of ethylene polymerization over LFeCl2/MgCl2‐Al(i‐Bu)3 has a value typical of supported Ziegler–Natta catalysts (11.9 kcal/mol). The polymerization reaction is of the first order with respect to monomer at the ethylene concentration >0.2 mol/L. Addition of small amounts of hydrogen (9–17%) significantly increases the activity; however, further increase in hydrogen concentration decreases the activity. The IRS and DSC analysis of PE indicates that catalyst LFeCl2/MgCl2‐Al(i‐Bu)3 has a very low copolymerizing ability toward propylene and hexene‐1. MW and MWD of PE produced over these catalysts depend on the polymerization time, ethylene and hexene‐1 concentration. The activation effect of hydrogen and other kinetic features of ethylene polymerization over supported catalysts based on the Fe (II) complexes are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5057–5066, 2007  相似文献   

11.
The facile and efficient functionalization of polynorbornene has been achieved through direct copolymerization of norbornene (NB) with 5‐norbornene‐2‐yl acetate (NBA) or 5‐norbornene‐2‐methanol (NBM) using a series of β‐ketiminato Ni(II)‐Me pyridine complexes 1–4 (Scheme 2 ) in the presence of B(C6F5)3. Remarkably, the monomer conversion could reach up to about 96% in 10 min in the NB/NBA copolymerization. The copolymers with wide NBA contents (3.3–38.4 mol %) were obtained by variation of reaction conditions. These copolymers have high molecular weights (MWs) (Mn = 41.8–144 kg/mol) and narrow MW distributions (Mw/Mn = 1.80–2.27). In the absence of alkyl aluminum compounds, a monomer conversion of 81% was observed in the NB/NBM copolymerization, and copolymers with NBM content in the range of 11.2–21.8 mol % were obtained by variation of reaction conditions. In addition, Ni(II)‐Me pyridine complexes 2 was very active at a low B/Ni molar ratio of 6, while bis‐ligand complex 6 bearing the same ligand just showed moderate efficiency at a high B/Ni molar ratio of 20. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
There are challenges in using magnesium coordination complexes as reagents owing to their tendency to adopt varying aggregation states in solution and thus impacting the reactivity of the complexes. Many magnesium complexes are prone to ligand redistribution via Schlenk equilibrium due to the ionic character within the metal–ligand interactions. The role of the supporting ligand is often crucial for providing stability to the heteroleptic complex. Strategies to minimize ligand redistribution in alkaline earth metal complexes could include using a supporting ligand with tunable sterics and electronics to influence the degree of association to the metal atom. Magnesium bis(hexamethyldisilazide) was reacted with salicylaldimines [1L = N‐(2,6‐diisopropylphenyl)salicylaldimine and 2L = 3,5‐di‐tert‐butyl‐N‐(2,6‐diisopropylphenyl)salicylaldimine] in either nondonor (toluene) or donor solvents [tetrahydrofuran (THF) or pyridine]. The structures of the magnesium complexes were studied in the solid state via X‐ray diffraction. In the nondonor solvent, i.e. toluene, the heteroleptic complex bis{μ‐2‐[(2,6‐diisopropylphenyl)iminomethyl]phenolato}‐κ3N,O:O3O:N,O‐bis[(hexamethyldisilazido‐κN)magnesium(II)], [Mg2(C19H22NO)2(C6H18NSi2)2] or [1LMgN(SiMe3)2]2, (1), was favored, while in the donor solvent, i.e. pyridine (pyr), the formation of the homoleptic complex {2,4‐di‐tert‐butyl‐6‐[(2,6‐diisopropylphenyl)iminomethyl]phenolato‐κ2N,O}bis(pyridine‐κN)magnesium(II) toluene monosolvate, [Mg(C27H38NO)2(C5H5N)2]·C5H5N or [{2L2Mg2(pyr)2}·pyr], (2), predominated. Heteroleptic complex (1) was crystallized from toluene, while homoleptic complexes (2) and the previously reported [1L2Mg·THF] [Quinque et al. (2011). Eur. J. Inorg. Chem. pp. 3321–3326] were crystallized from pyridine and THF, respectively. These studies support solvent‐dependent ligand redistribution in solution. In‐situ1H NMR experiments were carried out to further probe the solution behavior of these systems.  相似文献   

13.
Two bis(β‐ketoamino)copper [ArNC(CH3)CHC(CH3)O]2Cu ( 1 , Ar = 2,6‐dimethylphenyl; 2 , Ar = 2,6‐diisopropylphenyl) complexes were synthesized and characterized. Homo‐ and copolymerizations of methyl acrylate (MA) and 1‐hexene with bis(β‐ketoamino)copper(II) complexes activated with methylaluminoxane (MAO) were investigated in detail. MA was polymerized in high conversion (>72%) to produce the syndio‐rich atactic poly(methyl acrylate), but 1‐hexene was not polymerized with copper complexes/MAO. Copolymerizations of MA and 1‐hexene with 1 , 2 /MAO produced acrylate‐enriched copolymers (MA > 80%) with isolated hexenes in the backbone. The calculation of reactivity ratios showed that r(MA) is 8.47 and r(hexene) is near to 0 determined by a Fineman‐Ross method. The polymerization mechanism was discussed, and an insertion‐triggered radical mechanism was also proposed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1113–1121, 2010  相似文献   

14.
Iron‐mediated atom transfer radical polymerizations with activators generated by electron transfer of methyl methacrylate in N,N‐dimethylformamide solution in the presence and absence of a limited amount of air, using FeCl3·6H2O as the catalyst, ethyl 2‐bromoisobutyrate (EBiB) as the initiator, vitamin C as the reducing agent, and a commercially available organic acid, sulfosalicylic acid (SSA), as the ligand were investigated. Addition of SSA as the ligand could enhance the polymerization rate, and produce poly(methyl methacrylate) with controllable molecular weights and narrow molecular weight distributions (Mw/Mn = 1.30–1.50). The effect of [FeCl3·6H2O]0/[SSA]0 on the polymerization was studied by cyclic voltammetry characterization. Chain extension was performed to confirm the “living”/controlled nature of the polymerization system. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
Methyl methacrylate (MMA) were successfully polymerized by atom transfer radical polymerization with activator generated by electron transfer (AGET ATRP) using copper or iron wire as the reducing agent at 90°C. Well‐controlled polymerizations were demonstrated using an oxidatively stable iron(III) chloride hexahydrate (FeCl3·6H2O) as the catalyst, ethyl 2‐bromoisobutyrate (EBiB) as the initiator, and tetrabutylammonium bromide (TBABr) or triphenylphosphine as the ligand. The polymerization rate was fast and affected by the amount of catalyst and type of reducing agents. For example, the polymerization rate of bulk AGET ATRP with a molar ratio of [MMA]0/[EBiB]0/[FeCl3·6H2O]0/[TBABr]0 = 500/1/0.5/1 using iron wire (the conversion reaches up to 82.2% after 80 min) as the reducing agent was faster than that using copper wire (the conversion reaches up to 86.1% after 3 h). At the same time, the experimental Mn values of the obtained poly(methyl methacrylate) were consistent with the corresponding theoretical ones, and the Mw/Mn values were narrow (~1.3), showing the typical features of “living”/controlled radical polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Tripodal Bis(2,6‐iminophosphoranyl)pyridine Ligands: Iron and Cobalt Complexes with a Potential in Ethene Polymerisation By Staudinger Reaction of bis‐2,6‐diphenylphosphanyl‐pyridine with aryl‐, alkyl‐ and silylazides tripodal ligands L = 2,6‐(Ph2P=NR)2C5H3N (R = Ph 1 a , Mes 1 b , Ad  1 c , SiMe3 1 d ) are synthesized. The reaction of ligand 1 b  with equimolar amounts of [CoCl2(THF)2] and [FeCl2(THF)1.5] in THF does not lead to the expected neutral complexes [(k3‐L)MCl2] but to coordination compounds of the composition L2(CoCl2)3 ( 2 a ) und L(FeCl2)2 ( 3 ). By using acetonitrile as solvent or by crystallisation of 2 a from hot acetonitrile the cationic complex [(k3‐L)CoCl(MeCN)]Cl ( 2 b ) is formed as a second product. The molecular structure 2 b has been characterized by an X‐ray single crystal structure analysis (triclinic, P1, Z = 2, a = 1299.8(1), b = 1488.8(2), c = 1674.2(2) pm, α = 82.911(13)°, β = 76.715(12)°, γ = 72.758(11)°). A preliminary test with 3 shows, that coordination compounds of the ligand system introduced here have potential as catalysts in methyl alumoxane mediated ethene polymerisation.  相似文献   

17.
The development of rhenium(I) chemistry has been restricted by the limited structural and electronic variability of the common pseudo‐octahedral products fac‐[ReX(CO)3L2] (L2=α‐diimine). We address this constraint by first preparing the bidentate bis(imino)pyridine complexes [(2,6‐{2,6‐Me2C6H3N?CPh}2C5H3N)Re(CO)3X] (X=Cl 2 , Br 3 ), which were characterized by spectroscopic and X‐ray crystallographic means, and then converting these species into tridentate pincer ligand compounds, [(2,6‐{2,6‐Me2C6H3N?CPh}2C5H3N)Re(CO)2X] (X=Cl 4 , Br 5 ). This transformation was performed in the solid‐state by controlled heating of 2 or 3 above 200 °C in a tube furnace under a flow of nitrogen gas, giving excellent yields (≥95 %). Compounds 4 and 5 define a new coordination environment for rhenium(I) carbonyl chemistry where the metal center is supported by a planar, tridentate pincer‐coordinated bis(imino)pyridine ligand. The basic photophysical features of these compounds show significant elaboration in both number and intensity of the d–π* transitions observed in the UV/Vis spec tra relative to the bidentate starting materials, and these spectra were analyzed using time‐dependent DFT computations. The redox nature of the bis(imino)pyridine ligand in compounds 2 and 4 was examined by electrochemical analysis, which showed two ligand reduction events and demonstrated that the ligand reduction shifts to a more positive potential when going from bidentate 2 to tridentate 4 (+160 mV for the first reduction step and +90 mV for the second). These observations indicate an increase in electrostatic stabilization of the reduced ligand in the tridentate conformation. Elaboration on this synthetic methodology documented its generality through the preparation of the pseudo‐octahedral rhenium(I) triflate complex [(2,6‐{2,6‐Me2C6H3N?CPh}2C5H3N)Re(CO)2OTf] ( 7 , 93 % yield).  相似文献   

18.
In the presence of excess NaOH, reaction of Cu(OAc)2·H2O with equimolar ammonium calix[4]arene [H4L]I4 ( 1 , H4L = [5,11,17,23‐tetrakis(trimethylammonium)‐25,26,27,28‐tetrahydroxycalix[4]arene]) resulted in the formation of a mononuclear cationic Cu(II) complex [Cu(II)L(H2O)]I2 ( 2 ) in 43% yield. Complex 2 was characterized by elemental analysis, infrared (IR), and single crystal X‐ray diffraction. The Cu(II) atom in 2 is coordinated by four oxygen atoms of one L4? ligand and one O atom from one water molecule, forming a square pyramidal geometry. Complex 2 exhibited high catalytic activity in the oxidative polymerization of 2,6‐dimethylphenol using O2 as oxidizing agent in water under mild conditions. The selective polymerization produced poly(2,6‐dimethyl‐1,4‐phenylene oxide) in high yields with almost no diphenoquinone. The influence of the polymerization temperature, the time interval, the molar ratio of 2,6‐dimethylphenol/ 2 , the concentrations of sodium hydroxide, and sodium n‐dodecyl sulfate were examined. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
The synthesis, one‐ and two‐photon absorption (TPA) and emission properties of two novel 2,6‐anthracenevinylene‐based copolymers, poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinylene‐alt‐N‐octyl‐3,6‐carbazolevinyl‐ene] ( P1 ) and poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinyl‐ene‐alt‐N‐octyl‐2,7‐carbazolevinylene] ( P2 ) were reported. The as‐synthesized polymers have the number‐average molecular weights of 1.56 × 104 for P1 and 1.85 × 104 g mol?1 for P2 and are readily soluble in common organic solvents. They emit strong bluish‐green one‐ and two‐photon excitation fluorescence in dilute toluene solution (? P1 = 0.85, ? P2 = 0.78, λem( P1 ) = 491 nm, λem( P2 ) = 483 nm). The maximal TPA cross‐sections of P1 and P2 measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in toluene are 840 and 490 GM per repeating unit, respectively, which are obviously larger than that (210 GM) of poly[9,10‐bis‐(3,4‐bis(2‐ethylhexyloxy) phenyl)‐2,6‐anthracenevinylene], indicating that the poly(2,6‐anthracenevinylene) derivatives with large TPA cross‐sections can be obtained by inserting electron‐donating moieties into the polymer backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 463–470, 2010  相似文献   

20.
Salicylaldimine ligands, such as 5‐nitro‐N(2,6‐diisopropylphenyl)salicylaldimine, 3,5‐dinitro‐N(2,6‐diisopropylphenyl)salicylaldimine, and 3‐phenyl‐N(2,6‐diisopropylphenyl) salicylaldimine were checked in the oxidative addition to bis(1,5‐cyclooctadiene)nickel(0) to prepare, after activation by methylaluminoxane (MAO), novel nickel‐based catalytic systems active in the polymerization of methyl methacrylate. The catalytic behavior of the aforementioned systems, in terms of activity, molecular weight, and polydispersity of the resulting poly(methyl methacrylate) as well as its stereoregularity degree, was investigated as a function of the Al/Ni molar ratio, reaction temperature, and nature of the salicylaldimine ligand. The effect of ethylene atmosphere present during the preparation of the catalyst precursors was also investigated. The results are discussed and compared with those previously obtained by bis(salicylaldiminate)nickel(II)/MAO catalytic systems. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1716–1724, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号