首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The homopolymerization of ethylene by using different catalytic systems based on dinitro‐substituted bis(salicylaldiminate)nickel(II) precursors such as bis[3,5‐dinitro‐N(2,6‐diisopropylphenyl)]nickel(II) and bis[3,5‐dinitro‐N(phenyl)]nickel(II) in combination with organoaluminum compounds was investigated. In particular, the catalytic performances were studied as a function of the main reaction parameters, such as temperature, pressure, Al/Ni molar ratio, and duration. Methylaluminoxane resulted in the best co‐catalyst. Activities up to 200 kg polyethylene/(mol Ni × h) to give a linear high‐molecular‐weight polymer were achieved. The influence of the bulkiness of the substituents on the N‐aryl group of the aldimine ligand was also checked; it resulted in a determinant for catalytic activity rather than for polymer characteristics. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2534–2542, 2004  相似文献   

2.
Salicylaldimine ligands, such as 5‐nitro‐N(2,6‐diisopropylphenyl)salicylaldimine, 3,5‐dinitro‐N(2,6‐diisopropylphenyl)salicylaldimine, and 3‐phenyl‐N(2,6‐diisopropylphenyl) salicylaldimine were checked in the oxidative addition to bis(1,5‐cyclooctadiene)nickel(0) to prepare, after activation by methylaluminoxane (MAO), novel nickel‐based catalytic systems active in the polymerization of methyl methacrylate. The catalytic behavior of the aforementioned systems, in terms of activity, molecular weight, and polydispersity of the resulting poly(methyl methacrylate) as well as its stereoregularity degree, was investigated as a function of the Al/Ni molar ratio, reaction temperature, and nature of the salicylaldimine ligand. The effect of ethylene atmosphere present during the preparation of the catalyst precursors was also investigated. The results are discussed and compared with those previously obtained by bis(salicylaldiminate)nickel(II)/MAO catalytic systems. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1716–1724, 2003  相似文献   

3.
The polymerization of norbornene has been investigated in the presence of different bis(salicylaldiminate)nickel(II) precursors activated by methylaluminoxane. These systems are highly active in affording nonstereoregular vinyl‐type polynorbornenes (PNBs) with high molecular weights. The productivity of the catalytic systems is strongly enhanced (up to 35,000 kg of PNB/mol of Ni × h) when electron‐withdrawing nitro groups are introduced on the phenol moiety. On the contrary, the presence of bulky alkyl groups on the N‐aryl moiety of the ligand does not substantially affect the activity or characteristics of the resulting PNBs. The catalytic performances are also markedly influenced by the reaction parameters, such as the nature of the solvent, the reaction time, and the monomer/Ni and Al/Ni molar ratios. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1514–1521, 2006  相似文献   

4.
The homopolymerization of styrene by using different catalytic systems based on bis(salicylaldiminate)nickel(II) and methylaluminoxane was investigated. In particular, the effect on catalyst activity and polymer characteristics by electron withdrawing groups located on the phenolic moiety was studied. The influence of the bulkiness of the substituents on the N-aldimine ligand was also ascertained. Finally the catalytic performances were investigated as a function of the main reaction parameters, such as temperature, Al/Ni molar ratio and duration.  相似文献   

5.
Highly active, cheap, and easy to synthesize catalytic systems, obtained in situ by the oxidative addition of salicylaldimine ligands to bis(1,5‐cyclooctadiene)nickel(0) and activated by methylaluminoxane (MAO), are now reported for the vinyl polymerization of norbornene. Their activity resulted mainly influenced by the nature of the substituents present both on the phenolate moiety and on the N‐aryl ring as well as the content of free trimethylaluminum (TMA) present in the commercial MAO. In particular, the maximum activity, up to about 78,000 kg polynorbornene/mol Ni × h, was ascertained when 3,5‐dinitro‐N‐(2,6‐diisopropylphenyl)salicylaldimine ligand was adopted in conjunction with Ni(cod)2 and TMA‐depleted MAO. This remarkable performance, to the best of our knowledge, the highest never reported working in toluene instead of chlorinated aromatics, was reached adopting this more sustainable reaction medium. The influence of the main reaction parameters such as reaction time, temperature, monomer/Ni, and Al/Ni molar ratios on the catalytic performances and polymer characteristics was studied as well. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
合成了双[水杨醛(对硝基苯)亚胺]合镍催化剂A和双[水杨醛(对甲氧基苯)亚胺]合镍催化剂B.该两种双[N,O]配体合镍配合物/MAO催化体系能有效地催化极性单体甲基丙烯酸甲酯(MMA)聚合,催化活性可高达105gPMMA/(molNi.h).其中配体对位含有硝基吸电子(共轭)效应的催化剂A/MAO体系有相对较高的聚合反应热稳定性,温度达50℃时仍具有高催化活性.配体对位含有甲氧基推电子(共轭)效应的催化剂B/MAO则在30℃和Al/Ni摩尔比为600时表现出最高的催化活性.催化剂B/MAO体系催化得到PMMA的链序列结构以间规为主(含高达73.2%rr三元组),具有较高的玻璃化转变温度(Tg=106.4℃).  相似文献   

7.
Ten unsymmetrical N,N'‐bis (imino) acenaphthene‐nickel (II) halide complexes, [1‐[2,6‐{(4‐MeOC6H4)2CH}2–4‐MeC6H2N]‐2‐(ArN)C2C10H6]NiX2, each appended with one N‐2,6‐bis(4,4'‐dimethoxybenzhydryl)‐4‐methylphenyl group, have been synthesized and characterized. The molecular structures of Ni1 , Ni3 , Ni5 and Ni6 highlight the variation in steric protection afforded by the inequivalent N‐aryl groups; a distorted tetrahedral geometry is conferred about each nickel center. On activation with diethylaluminum chloride (Et2AlCl) or methylaluminoxane (MAO), all complexes showed high activity at 30°C for the polymerization of ethylene with the least bulky bromide precatalysts ( Ni1 and Ni4 ), generally the most productive, forming polyethylenes with narrow dispersities [Mw/Mn: < 3.4 (Et2AlCl), < 4.1 (MAO)] and various levels of branching. Significantly, this level of branching can be influenced by the type of co‐catalyst employed, with Et2AlCl having a predilection towards polymers displaying significantly higher branching contents than with MAO [Tm: 33.0–82.5°C (Et2AlCl) vs. 117.9–119.4°C (MAO)]. On the other hand, the molecular weights of the materials obtained with each co‐catalyst were high and, in some cases, entering the ultra‐high molecular weight range [Mw range: 6.8–12.2 × 105 g mol?1 (Et2AlCl), 7.2–10.9 × 105 g mol?1 (MAO)]. Furthermore, good tensile strength (εb up to 553.5%) and elastic recovery (up to 84%) have been displayed by selected more branched polymers highlighting their elastomeric properties.  相似文献   

8.
Novel catalytic systems, prepared in situ by the oxidative addition of 8‐hydroxyquinoline ligands to bis(1,5‐cyclooctadiene)nickel(0) and activated by methylaluminoxane, were studied in ethylene polymerization. When 8‐hydroxyquinoline was employed, only oligomeric products were obtained. On the contrary, 5,7‐dinitro‐8‐hydroxyquinoline gave linear polyethylene (PE), but with a modest activity. For the catalyst based on 5‐nitro‐8‐hydroxyquinoline, the productivity was largely dependent on the content of free trimethylaluminum (TMA) present in the commercial aluminoxane. The progressive optimization of the TMA/oligomeric methylaluminoxane ratio increased the productivity, which reached 700 kg of PE/(mol of Ni × h), by an order of magnitude. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 200–206, 2006  相似文献   

9.
Summary: The performances of ethylene polymerization catalysts based on III and commercial methylaluminoxane were investigated by reducing the content of free trimethylaluminum in methylaluminoxane by its reaction with 2,6‐di‐tert‐butylphenol. This allowed optimization of the formulation of the catalyst, affording a high‐molecular‐weight linear polyethylene (PE) with a productivity [(1 900 kg of PE/(mol of Ni × h)], ten‐fold higher than that previously achieved for the same system adopting commercial methylaluminoxane not pre‐treated with the above phenol derivative.

  相似文献   


10.
The cadmium atom is coordinated in distorted pentagonal bipyramidal geometry by the pyridine‐nitrogen atom of the 4‐[N,N‐bis(2‐cyanoethyl)amino]pyridine ligand, two oxygen atoms of two methanol molecules and four oxygen atoms of two acetate groups. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
In (C11H12N4)2ZnCl2, the zinc(II) center is coordinated by the pyridine nitrogen atoms of two 4‐[N,N‐bis(2‐cyanoethyl)amino]pyridine ligands and two chlorine atoms in a tetrahedral geometry. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Novel catalytic systems based on bis‐(chelate)nickel(II) precursors, such as bis(α‐nitroacetophenonate)nickel(II) [Ni(naph)2] and bis(2,6‐diisopropylbenzenesalicylaldiminate)nickel(II) [Ni(dipbs)2], and methylaluminoxane (MAO) as the cocatalyst were employed for the polymerization of methyl methacrylate (MMA). Reaction parameters were examined. Under proper conditions, the Ni(dipbs)2/MAO system allowed to obtain poly(MMA) with a very high productivity (TOF up to 70 000 h–1) and a remarkable syndiospecificity degree (rr > 80%) at room temperature without addition of an ancillary Lewis base.  相似文献   

13.
New Nickel (II) catalytic systems based on N,O chelate ligands, activated by methylaluminoxane, have been checked in the homopolymerization of methyl methacrylate (MMA) and its copolymerization with ethylene. In particular, the bis(8‐hydroxy‐5‐nitro‐quinolate)nickel(II)/methylaluminoxane system as well as the catalysts obtained by oxidative addition of either 8‐hydroxy‐5‐nitro‐quinoline or 8‐hydroxy‐5,7‐dinitro‐quinoline or 4‐nitro‐2‐(p‐nitrobenzylideneamino)‐phenol to Ni(cod)2, subsequently activated by methylaluminoxane, have been employed. The influence of the reaction parameters on the catalytic activity and the characteristics of the resulting polymers has been investigated. All the obtained poly(methyl methacrylate) samples display a largely prevailing syndiotacticity degree, high molecular weights and a rather large polydispersity. The catalytic systems obtained through the oxidative procedure are able also to give copolymers of MMA with ethylene producing highly linear polyethylenes containing a low amount (1.5–2 mol %) of MMA counits, thus affording materials with improved surface properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 620–633, 2006  相似文献   

14.
Five examples of unsymmetrical 1,2‐bis (arylimino) acenaphthene ( L1 – L5 ), each containing one N‐2,4‐bis (dibenzocycloheptyl)‐6‐methylphenyl group and one sterically and electronically variable N‐aryl group, have been used to prepare the N,N′‐nickel (II) halide complexes, [1‐[2,4‐{(C15H13}2–6‐MeC6H2N]‐2‐(ArN)C2C10H6]NiX2 (X = Br: Ar = 2,6‐Me2C6H3 Ni1 , 2,6‐Et2C6H3 Ni2 , 2,6‐i‐Pr2C6H3 Ni3 , 2,4,6‐Me3C6H2 Ni4 , 2,6‐Et2–4‐MeC6H2 Ni5 ) and (X = Cl: Ar = 2,6‐Me2C6H3 Ni6 , 2,6‐Et2C6H3 Ni7 , 2,6‐i‐Pr2C6H3 Ni8 , 2,4,6‐Me3C6H2 Ni9 , 2,6‐Et2–4‐MeC6H2 Ni10 ), in high yield. The molecular structures Ni3 and Ni7 highlight the extensive steric protection imparted by the ortho‐dibenzocycloheptyl group and the distorted tetrahedral geometry conferred to the nickel center. On activation with either Et2AlCl or MAO, Ni1 – Ni10 exhibited very high activities for ethylene polymerization with the least bulky Ni1 the most active (up to 1.06  ×  107 g PE mol?1(Ni) h?1 with MAO). Notably, these sterically bulky catalysts have a propensity towards generating very high molecular weight polyethylene with moderate levels of branching and narrow dispersities with the most hindered Ni3 and Ni8 affording ultra‐high molecular weight material (up to 1.5  ×  106 g mol?1). Indeed, both the activity and molecular weights of the resulting polyethylene are among the highest to be reported for this class of unsymmetrical 1,2‐bis (imino)acenaphthene‐nickel catalyst.  相似文献   

15.
Reactions of lead(Ⅱ) nitrate or perchlorate with bis(3,5-dimethylpyrazolyl)methane (dmpzm), produced two new Pb(Ⅱ) chelated complexes [Pb(dmpzm)2X2] (X=NO3^- 1, ClO4^- 2). Both compounds were structurally characterized by elemental analysis, IR spectroscopy, thermal analysis, and single crystal X-ray diffraction. Both compounds are mononuclear with a distorted square antiprismatic PbN4O4 coordination geometry incorporating a pair of O,O'-bidentate anions and N,N'-bidentate dmpzm ligands. In the crystals of 1 or 2, the methyl or methylene groups of dmpzm ligand interact with the oxygen atoms of nitrates or perchlorates to afford intra- and intermolecular hydrogen bonding, thereby forming a two-dimensional network 1 or a three-dimensional structure 2.  相似文献   

16.
A series of Zn (II), Pd (II) and Cd (II) complexes, [(L) n MX 2 ] m (L = L‐a–L‐c; M = Zn, Pd; X = Cl; M = Cd; X = Br; n, m = 1 or 2), containing 4‐methoxy‐N‐(pyridin‐2‐ylmethylene) aniline ( L‐a ), 4‐methoxy‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐b ) and 4‐methoxy‐N‐methyl‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐c ) have been synthesized and characterized. The X‐ray crystal structures of Pd (II) complexes [L 1 PdCl 2 ] (L = L‐b and L‐c) revealed distorted square planar geometries obtained via coordinative interaction of the nitrogen atoms of pyridine and amine moieties and two chloro ligands. The geometry around Zn (II) center in [(L‐a)ZnCl 2 ] and [(L‐c)ZnCl 2 ] can be best described as distorted tetrahedral, whereas [(L‐b) 2 ZnCl 2 ] and [(L‐b) 2 CdBr 2 ] achieved 6‐coordinated octahedral geometries around Zn and Cd centers through 2‐equivalent ligands, respectively. In addition, a dimeric [(L‐c)Cd(μ ‐ Br)Br] 2 complex exhibited typical 5‐coordinated trigonal bipyramidal geometry around Cd center. The polymerization of methyl methacrylate in the presence of modified methylaluminoxane was evaluated by all the synthesized complexes at 60°C. Among these complexes, [(L‐b)PdCl 2 ] showed the highest catalytic activity [3.80 × 104 g poly (methyl methacrylate) (PMMA)/mol Pd hr?1], yielding high molecular weight (9.12 × 105 g mol?1) PMMA. Syndio‐enriched PMMA (characterized using 1H‐NMR spectroscopy) of about 0.68 was obtained with Tg in the range 120–128°C. Unlike imine and amine moieties, the introduction of N‐methyl moiety has an adverse effect on the catalytic activity, but the syndiotacticity remained unaffected.  相似文献   

17.
Four ligands of 1,3‐bis(4‐pyridyl)propane and two water molecules are coordinated to the zinc(II) atom so that the coordination geometry closely resembles a trans‐N4O2 octahedral environment. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
A series of new strictly alternating aromatic poly(ester‐imide)s having inherent viscosities of 0.20–0.98 dL/g was synthesized by the diphenylchlorophosphate (DPCP) activated direct polycondensation of the preformed imide ring‐containing diacid, 3,3‐bis[4‐(trimellitimidophenoxy)phenyl]phthalide (I), with various bisphenols in a medium consisting of pyridine and lithium chloride. The diimide–diacid I was prepared from the condensation of 3,3‐bis[4‐(4‐aminophenoxy)phenyl]phthalide and trimellitic anhydride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents such as N‐methyl‐2‐pyrrolidone (NMP) and N,N‐dimethylacetamide (DMAc). Transparent and flexible films of these polymers could be cast from their DMAc solutions. The cast films had tensile strengths ranging 66–105 MPa, elongations at break from 7–10%, and initial moduli from 1.9–2.4 GPa. The glass‐transition temperatures of these polymers were recorded between 208–275 °C. All polymers showed no significant weight loss below 400 °C in the air or in nitrogen, and the decomposition temperatures at 10% weight loss all occurred above 460 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1090–1099, 2000  相似文献   

19.
Dynamic mechanical thermoanalysis showed that polyethene, prepared under suitable polymerization conditions with the Brookhart‐type catalyst dibromo‐N,N′‐1,2‐acenaphthylenediylidenebis[2,6‐bis(1‐methylethyl)benzeneamine]Ni(II)/methylaluminoxane (MAO), behaved like an elastomer, even though no comonomer was added. A structural characterization showed that the polymers contained methyl to hexyl branches and some longer branches. The effect of the polymerization conditions on branching was investigated through variations in the pressure and temperature of the polymerization. Depending on the degree and type of branching, polyethene was either quite amorphous or highly crystalline with a high melting temperature. The solid‐state structure of the catalyst dibromo‐N,N′‐1,2‐acenaphthylenediylidenebis[2,6‐bis(1‐methylethyl)benzeneamine]Ni(II) consisted of two centrosymmetrically related monomeric moieties, where Ni atoms were bridged by two bromide ligands. The Ni atom was five‐coordinated, with a square pyramidal coordination polyhedron. The sixth coordination site of the octahedral geometry was effectively blocked by the isopropyl groups of the 2,6‐C6H3(i‐Pr) substituents of the diimine ligand. In solution in the presence of MAO, the longer bridging Ni? Br bonds broke, and the complex dissociated to a monomeric species. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1426–1434, 2001  相似文献   

20.
A series of new α‐diimine nickel(II) catalysts bearing bulky chiral sec‐phenethyl groups have been synthesized and characterized. The molecular structure of representative chiral ligand, bis[N,N′‐(4‐methyl‐2,6‐di‐sec‐phenethylphenyl)imino]‐1,2‐dimethylethane rac‐1c and chiral complexes, {bis[N,N′‐(4‐methyl‐2‐sec‐phenethylphenyl)imino]‐2,3‐butadiene}dibromidonickel rac‐2a and bis{bis[N,N′‐(4‐methyl‐2‐sec‐phenethylphenyl)imino]‐2,3‐butadiene}dibromidonickel rac‐2b, were confirmed by X‐ray crystallographic analysis. Complex rac‐2c bearing two chiral sec‐phenethyl groups in the ortho‐aryl position and a methyl group in the para‐aryl position, activated by diethylaluminum chloride (DEAC), showed highly catalytic activity for the polymerization of ethylene [4.12 × 106 g PE (mol Ni.h.bar)?1], and produced highly branched polyethylenes under low ethylene pressure (branching degree: 104, 118 and 126 branches/1000 C at 20, 40 and 60°C, respectively). Chiral 20‐electron bis‐α‐diimine Ni(II) complex rac‐2b also exhibited high activity toward ethylene polymerization [1.71 × 106 g PE (mol Ni · h · bar)?1]. The type and amount of branches of the polyethylenes obtained were determined by 1H and 13C NMR. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号