首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of poly(amide‐imide)s were prepared using a new monomer, 1,3‐bis(trimellitimido)‐2,4,6‐trimethyl benzene (BTB), with four different diamines: 1,4‐phenylene diamine (PDA), 2,4‐diamino mesitylene (DAM), 2,2′‐dimethyl‐4,4′‐diamino biphenyl (DMDB), and 2,2′‐bis(trifluoromethyl)‐4,4′‐diamino biphenyl (TFDB). They were prepared by the condensation method in N‐methyl‐2‐pyrrolidinone (NMP) solvent using triphenyl phosphate and pyridine as condensing agents. The synthesized poly(amide‐imide)s were characterized by Fourier transform infrared and 1H NMR techniques. Films were prepared and characterized using DSC, thermogravimetric analysis (TGA), a prism coupler, and a film dielectric property analyzer. DSC measurement showed that the glass‐transition temperatures of the polymers were in the range of 259–327 °C. TGA analysis showed 5% weight loss, in the range of 472–514 °C. The refractive index varied from 1.6004 to 1.6586 in the following increasing order: BTB‐TFBM < BTB‐DAM < BTB‐DMDB < BTB‐PDA. For the poly(amide‐imide) films, the birefringence varied in the range of 0.0319–0.0580, in the following increasing order: BTB‐DAM < BTB‐TFBM < BTB‐DMDB < BTB‐PDA. The capacitance method showed that the dielectric constant of poly(amide‐imide) varied with the diamine structure; no difference was found by the optical method. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 137–143, 2004  相似文献   

2.
A new cardo diamine monomer 3, 3‐bis‐[4‐{2′trifluoromethyl 4′‐(4″‐aminophenyl) phenoxy} phenyl]‐2‐phenyl‐2, 3‐dihydro‐isoindole‐1‐one ( 4 ) has been synthesized from potentially cheap phenolphthalein as the starting material. This diamine was used for the synthesis of a new poly(ether amide) and two co‐poly(ether amide)s using 4, 4′‐diaminodiphenyl ether (ODA) as co‐monomer by direct solution polycondensation with 5‐t‐butyl iso‐phthalic acid. These new polymers showed inherent viscosities of 0.48–0.62 dL g?1. The resulting poly(ether amide) and co‐poly(ether amide)s were readily soluble in polar aprotic solvents like NMP, DMF, DMAc, DMSO, and pyridine. The polymers have been fully characterized by 1H and 13C NMR, FTIR spectroscopy, and elemental analysis. These polymers showed glass transition temperatures in the range of 267–310°C. Thermogravimetric analysis indicated high thermal stability of these polymers at 5 and 10% weight loss temperature in air above 357°C and 419°C, respectively. The poly(ether amide) films cast from DMAc were flexible with tensile strength up to 91 MPa, elongations at break up to 11%, and modulus of elasticity up to 1.82 GPa. X‐ray diffraction measurements indicate the amorphous nature of the poly(ether amide)s. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Two series of phosphorus‐containing aromatic poly(ester amide)s with inherent viscosities of 0.46–3.20 dL/g were prepared by low‐temperature solution polycondensation from 1,4‐bis(3‐aminobenzoyloxy)‐2‐(6‐oxido‐6H‐dibenz〈c,e〉〈1,2〉oxaphosphorin‐6‐yl)naphthalene and 1,4‐bis(4‐aminobenzoyloxy)‐2‐(6‐oxido‐6H‐dibenz〈c,e〉〈1,2〉oxaphosphorin‐6‐yl)naphthalene with various aromatic diacid chlorides. All the poly(ester amide)s were amorphous and readily soluble in many organic solvents, such as N,N‐dimethylformamide, N,N‐dimethylacetamide (DMAc), and N‐methyl‐2‐pyrrolidone (NMP). Transparent, tough, and flexible films of these polymers were cast from DMAc and NMP solutions. Their casting films had tensile strengths of 71–214 MPa, elongations to break of 5–10%, and initial moduli of 2.3–6.0 GPa. These poly(ester amide)s had glass‐transition temperatures of 209–239 °C (m‐series) and 222–267 °C (p‐series). The degradation temperatures at 10% weight loss in nitrogen for these polymers ranged from 462 to 489 °C, and the char yields at 800 °C were 55–63%. Most of the poly(ester amide)s also showed a high char yield of 35–45%, even at 800 °C under a flow of air. The limited oxygen indices of these poly(ester amide)s were 35–46. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 459–470, 2002; DOI 10.1002/pola.10129  相似文献   

4.
A diimide dicarboxylic acid, 1,4‐bis(4‐trimellitimidophenoxy)naphthalene (1,4‐BTMPN), was prepared by condensation of 1,4‐bis(4‐aminophenoxy)naphthalene and trimellitic anhydride at a 1 : 2 molar ratio. A series of novel poly(amide‐imide)s (IIa–k) with inherent viscosities of 0.72 to 1.59 dL/g were prepared by triphenyl phosphite‐activated polycondensation from the diimide‐diacid 1,4‐BTMPN with various aromatic diamines (Ia–k) in a medium consisting of N‐methyl‐2‐pyrrolidinone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s showed good solubility in NMP, N,N‐dimethylacetamide, and N,N‐dimethylformamide. The thermal properties of the obtained poly(amide‐imide)s were examined with differential scanning calorimetry and thermogravimetry analysis. The synthesized poly(amide‐imide)s possessed glass‐transition temperatures in the range of 215 to 263°C. The poly(amide‐imide)s exhibited excellent thermal stabilities and had 10% weight losses at temperatures in the range of 538 to 569°C under a nitrogen atmosphere. A comparative study of some corresponding poly(amide‐imide)s also is presented. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1–8, 2000  相似文献   

5.
A series of novel poly(amine amide)s ( IIa – IIl ) with pendent N‐carbazolylphenyl units having inherent viscosities of 0.25–1.06 dL/g were prepared via direct phosphorylation polycondensation from various dicarboxylic acids and a carbazole‐based aromatic diamine. Except for poly(amine amide) IIc , derived from trans‐1,4‐cyclohexanedicarboxylic acid, all the other amorphous poly(amine amide)s were readily soluble in many polar solvents, such as N,N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone (NMP), and could be cast into transparent and flexible films. The aromatic poly (amine amide)s had useful levels of thermal stability associated with relatively high glass‐transition temperatures (268–331 °C), 10% weight loss temperatures in excess of 540 °C, and char yields at 800 °C in nitrogen higher than 60%. These polymers exhibited maximum ultraviolet–visible absorption at 293–361 nm in NMP solutions. Their photoluminescence in NMP solutions exhibited fluorescence emission maxima around 362 and 448–499 nm for aromatic–aliphatic poly(amine amide)s IIa – IIc and aromatic poly (amine amide)s IId – IIl , respectively. The fluorescence quantum yield in NMP solutions ranged from 0.34% for IIj to 4.44% for IIa . The hole‐transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the poly(amine amide) films cast onto an indium tin oxide coated glass substrate exhibited reversible oxidation at 0.81 V and irreversible oxidation redox couples at 1.20 V versus Ag/AgCl in acetonitrile solutions, and they revealed excellent stability of the electrochromic characteristics, with a color change from yellow to green at applied potentials ranging from 0.00 to 1.05 V. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4108–4121, 2006  相似文献   

6.
程琳  蹇锡高 《中国化学》2000,18(3):414-417
Two novel heterocyclic diamine monomers: 1,2-dihydro-2-(4-aminophenyl)-4-[ 4-( 4-aminophenoxy) phenyl ]-(2H )-phtha-lazin-1-one and 1, 2-dihydro-2-( 4-aminophenyl )-4-[ 4-( 4-aminophenoxy) -3, 5-dimethylphenyl ] - (2H) -phthalazin-1-one were successfully synthesized using readily available heterocyclic bisphenol-like monomers through two steps in high yield. A series of novel poly( aryl ether amide)s containing the phthalazinone moiety with inherent viscosities of 1.16-1.67 dL/g were prepared by the direct polymerization of the novel diamines and aromatic dicarboxylic acids using triphenyl phosphite and pyridine as condensing agents. The polymers were readily soluble in a variety of solvents such as N, N-dimethyl-formamide (DMF), N,N-dimethylacetamide (DMAc), dimethylsulfoxide ( DMSO ), N-methyl-2-pyrrolidinone (NMP), and pyridine. The polymers had high glass transition temperatures (Tg) in the 291-329℃ range.  相似文献   

7.
A series of poly(amide–imide)s IIIa–m containing flexible isopropylidene and ether groups in the backbone were synthesized by the direct polycondensation of 4,4′‐[1,4‐phenylenebis(isopropylidene‐1,4‐phenyleneoxy)]dianiline (PIDA) with various bis(trimellitimide)s IIa–m in N‐methyl‐2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. The resulting poly(amide–imide)s had inherent viscosities in the range of 0.80–1.36 dL/g. Except for those from the bis(trimellitimide)s of p‐phenylenediamine and benzidine, all the polymers could be cast from DMAc into transparent and tough films. They exhibited excellent solubility in polar solvents. The 10% weight loss temperatures of the polymers in air and in nitrogen were all above 495°C, and their Tg values were in the range of 201–252°C. Some properties of poly(amide–imide)s III were compared with those of the corresponding poly(amide–imide)s V prepared from the bis(trimellitimide) of diamine PIDA and various aromatic diamines. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 69–76, 1999  相似文献   

8.
4,4′‐(1,4‐Phenylenedioxy)dibenzoic acid as well as the 2‐methyl‐, 2‐tert‐butyl‐, or 2‐phenyl‐substituted derivatives of this dicarboxylic acid were synthesized in two main steps from p‐fluorobenzonitrile and hydroquinone or its methyl‐, tert‐butyl‐, or phenyl‐substituted derivatives. Polyhydrazides and poly(amide–hydrazide)s were prepared from these bis(ether benzoic acid)s or their diacyl chlorides with terephthalic dihydrazide, isophthalic dihydrazide, or p‐aminobenzoyl hydrazide by means of the phosphorylation reaction or low‐temperature solution polycondensation. Most of the hydrazide polymers and copolymers are amorphous and readily soluble in various polar solvents such as N‐methyl‐2‐pyrrolidone (NMP) and dimethyl sulfoxide. They could be solution‐cast into transparent, flexible, and tough films. These polyhydrazides and poly(amide–hydrazide)s had Tgs in the range of 167–237°C and could be thermally cyclodehydrated into the corresponding poly(1,3,4‐oxadiazole)s and poly(amide–1,3,4‐oxadiazole)s approximately in the region of 250–350°C, as evidenced by the DSC thermograms. All the tert‐butyl‐substituted oxadiazole polymers and those derived from isophthalic dihydrazide were organic soluble. The thermally converted oxadiazole polymers exhibited Tgs in the range of 208–243°C and did not show significant weight loss before 450°C either in nitrogen or in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1169–1181, 1999  相似文献   

9.
New poly(arylene ether amide)s with trifluoromethyl pendent groups were prepared via nucleophilic nitro displacement reaction of AB‐type monomers. 4‐Nitro‐3‐trifluoromethyl‐[N‐(4‐hydroxyphenyl)]benzamide ( 3 ) and 4‐nitro‐3‐trifluoro‐methyl‐[N‐(3‐hydroxyphenyl)]benzamide ( 4 ) gave polymers with weight‐average molecular weights over 42 000 g/mol and glass transition temperatures of 269°C and 213°C, respectively. Both polymers were soluble in common organic solvents including THF, and formed transparent films upon casting.  相似文献   

10.
A new one‐pot procedure for imide–acid monomer synthesis and polymerization is reported for four new poly(amide–imide)s. Bisphenol A dianhydride (BPADA) was reacted with twice the molar amount of 3‐aminobenzoic acid (3ABA) or 3‐amino‐4‐methylbenzoic acid (3A4MBA) in 1‐methyl‐2‐pyrrolidinone (NMP) and toluene mixture, and the amic acid intermediates cyclized in solution to give two diimide‐containing dicarboxylic acid monomers. Without isolation, the diacid monomers were then polymerized with either 1,3‐diaminomesitylene (DAM) or 1,5‐diaminonaphthalene (1,5NAPda) using triphenyl phosphite‐activation to give a series of four soluble poly(amide–imide)s, PAI. Isolation and purification of the dicarboxylic acid monomers was not necessary for formation of high molecular weight polymers as indicated by intrinsic viscosities of 0.64–1.04 dL/g determined in N,N‐dimethylacetamide (DMAc). All of the PAI were soluble in polar aprotic solvents such as NMP, DMAc, and dimethyl sulfoxide (DMSO). Glass transition temperatures ranged from 243 to 279°C by DSC, and 5% weight loss temperatures were above 400°C in both air and nitrogen. Flexible films cast from DMAc were light yellow, transparent, and tough. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1183–1188, 1999  相似文献   

11.
Polyhydrazides and poly(amide‐hydrazide)s were prepared from two ether‐sulfone‐dicarboxylic acids, 4,4′‐[sulfonylbis(1,4‐phenylene)dioxy]dibenzoic acid and 4,4′‐[sulfonylbis(2,6‐dimethyl‐1,4‐phenylene)dioxy]dibenzoic acid, or their diacyl chlorides with terephthalic dihydrazide, isophthalic dihydrazide, and p‐aminobenzhydrazide via a phosphorylation reaction or a low‐temperature solution polycondensation. All the hydrazide polymers were found to be amorphous according to X‐ray diffraction analysis. They were readily soluble in polar organic solvents such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide and could afford colorless, flexible, and tough films with good mechanical strengths via solvent casting. These hydrazide polymers exhibited glass‐transition temperatures of 149–207 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the solid state at elevated temperatures. Although the oxadiazole polymers showed a significantly decreased solubility with respect to their hydrazide prepolymers, some oxadiazole polymers were still organosoluble. The thermally converted oxadiazole polymers had glass‐transition temperatures of 217–255 °C and softening temperatures of 215–268 °C and did not show significant weight loss before 400 °C in nitrogen or air. For a comparative study, related sulfonyl polymers without the ether groups were also synthesized from 4,4′‐sulfonyldibenzoic acid and the hydrazide monomers by the same synthetic routes. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2271–2286, 2001  相似文献   

12.
Two new phenyl‐ and naphthyl‐substituted rigid‐rod aromatic dicarboxylic acid monomers, 2,2′‐diphenylbiphenyl‐4,4′‐dicarboxylic acid ( 4 ) and 2,2′‐di(1‐naphthyl)biphenyl‐4,4′‐dicarboxylic acid ( 5 ), were synthesized by the Suzuki coupling reaction of 2,2′‐diiodobiphenyl‐4,4′‐dicarboxylic acid dimethyl ester with benzeneboronic acid and naphthaleneboronic acid, respectively, followed by alkaline hydrolysis of the ester groups. Four new polyhydrazides were prepared from the dicarboxylic acids 4 and 5 with terephthalic dihydrazide (TPH) and isophthalic dihydrazide (IPH), respectively, via the Yamazaki phosphorylation reaction. These polyhydrazides were amorphous and readily soluble in many organic solvents. Differential scanning calorimetry (DSC) indicated that these hydrazide polymers had glass transition temperatures in the range of 187–234 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300–400 °C. The resulting poly(1,3,4‐oxadiazole)s exhibited Tg's in the range of 252–283 °C, 10% weight‐loss temperature in excess of 470 °C, and char yield at 800 °C in nitrogen higher than 54%. These organo‐soluble polyhydrazides and poly(1,3,4‐oxadiazole)s exhibited UV–Vis absorption maximum at 262–296 and 264–342 nm in NMP solution, and their photoluminescence spectra showed maximum bands around 414–445 and 404–453 nm, respectively, with quantum yield up to 38%. The electron‐transporting properties were examined by electrochemical methods. Cyclic voltammograms of the poly(1,3,4‐oxadiazole) films cast onto an indium‐tin oxide (ITO)‐coated glass substrate exhibited reversible reduction redox with Eonset at ?1.37 to ?1.57 V versus Ag/AgCl in dry N,N‐dimethylformamide solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6466–6483, 2006  相似文献   

13.
A new dicarboxylic acid having a kinked structure was synthesized from the condensation of 2,2′-bis(4-aminophenoxy)biphenyl and trimellitic anhydride. A series of biphenyl-2,2′-diyl-containing aromatic poly(amide-imide)s having inherent viscosities of 0.23–0.94 dL/g was prepared by the triphenyl phosphite activated polycondensation from the diimide-diacid II with various aromatic diamines in a medium consisting of N-methyl-2-pyrrolidone (NMP), pyridine, and calcium chloride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents including NMP and N,N-dimethylacetamide (DMAc). Transparent, flexible, and tough films of these polymers could be cast from DMAc or NMP solutions. The glass transition temperatures of these polymers were in the range of 227–261°C and the 10% weight loss temperatures were above 520°C in nitrogen. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1169–1177, 1998  相似文献   

14.
High molecular-weight aromatic polyamides were obtained from 1,5- and 2,6-bis-(4′-carboxy-4-phenylenoxy-sulfonyl)naphthalene by direct polycondensation reaction in N-methyl-2-pyrrolidone with various aromatic diamines, using triphenyl phosphite and pyridine as condensing agents. The polymers were characterized by elemental analysis, thermogravimetric analysis, differential scanning calorimetry, and infrared analysis. The polyamides, obtained in quantitative yield, possessed inherent viscosities in the range 0.42–1.70 dL/g, glass transition temperatures between 245–310°C, and 10% weight loss temperatures in nitrogen and air above 435 and 424°C, respectively. Most of the polymers were soluble in aprotic solvents. The effect of the structure on properties, such as solubility, Tg, and thermal behavior, were also studied. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
A dicarboxylic acid {1,1‐bis[4‐(4‐trimellitimidophenoxy)phenyl]‐1‐phenylethane ( II )} bearing two performed imide rings was prepared from the condensation of 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenylethane and trimellitic anhydride in a 1/2 molar ratio. A novel family of poly(amide‐imide)s with inherent viscosities of 0.83–1.51 dL/g was prepared by triphenyl phosphite‐activated polycondensation from the diimide‐diacid II with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidinone (NMP), pyridine, and calcium chloride. Because the 1,1,1‐triphenylethane group of II was unsymmetrical, most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N‐dimethylacetamide. All the soluble poly(amide‐imide)s afforded tough, transparent, and flexible films, which had tensile strengths ranging from 88 to 102 MPa, elongations at break from 6 to 11%, and initial moduli from 2.23 to 2.71 GPa. The synthesized poly(amide‐imide)s possessed glass‐transition temperatures from 250 to 287 °C. The poly(amide‐imide)s exhibited excellent thermal stabilities and had 10% weight losses from 501 to 534 °C under a nitrogen atmosphere. A comparative study of some corresponding poly(amide‐imide)s is also presented. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 775–787, 2001  相似文献   

16.
A series of novel bis(phenoxy)phthalimidine-containing poly(amide-imide)s III were synthesized by the direct polycondensation of 3,3-bis[4-(4-aminophenoxy)phenyl]phthalimidine (BAPP) with various aromatic bis(trimellitimide)s in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Poly(amide-imide)s III , having inherent viscosities up to 1.36 dL/g, were obtained in quantitative yields. All resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these polymers were in the range of 267–322°C and the 10% weight loss temperatures were above 490°C in nitrogen. Some properties of poly(amide-imide)s III were compared with those of the corresponding isomeric poly(amide-imide)s III′ prepared from 3,3-[4-(4-trimellitimidophenoxy)phenyl]-phthalimidine and various aromatic diamines. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
A new type of tetraimide‐dicarboxylic acid ( I ) was synthesized starting from the ring‐opening addition of m‐aminobenzoic acid, 4,4′‐oxydiphthalic anhydride, and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane at a 2:2:1 molar ratio in N‐methyl‐2‐pyrrolidone (NMP), followed by cyclodehydration to the diacid I . A series of soluble and light‐colored poly(amide‐imide‐imide)s ( III a–j) was prepared by triphenyl phosphite‐activated polycondensation from I with various aromatic diamines ( II a–j). All films cast from N,N‐dimethylacetamide (DMAc) had cutoff wavelengths shorter than 390 nm (374–390 nm) and b* values between 25.26 and 43.61; these polymers were much lighter in color than the alternating trimellitimide series. All of the polymers were readily soluble in a variety of organic solvents such as NMP, DMAc, N,N‐dimethylformamide, dimethyl sulfoxide, and even in less polar m‐cresol and pyridine. Polymers III a–j afforded tough, transparent, and flexible films that had tensile strengths ranging from 96 to 118 MPa, elongations at break from 9 to 11%, and initial moduli from 2.0 to 2.5 GPa. The glass‐transition temperatures of the polymers were recorded at 240–268 °C. They had 10% weight loss at a temperature above 540 °C and left more than 55% residue even at 800 °C in nitrogen. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 707–718, 2002; DOI 10.1002/pola.10153  相似文献   

18.
A series of poly(o‐hydroxy amide)s having both ether and sulfone linkages in the main chain were synthesized via the low‐temperature solution polycondensation of 4,4′‐[sulfonylbis(1,4‐phenylene)dioxy]dibenzoyl chloride and 4,4′‐[sulfonylbis(2,6‐dimethyl‐1,4‐phenylene)dioxy]dibenzoyl chloride with three bis(o‐aminophenol)s including 4,4′‐diamino‐3,3′‐dihydroxybiphenyl, 3,3′‐diamino‐4,4′‐dihydroxybiphenyl, and 2,2‐bis(3‐diamino‐4‐hydroxyphenyl)hexafluoropropane. Subsequent thermal cyclodehydration of the poly(o‐hydroxy amide)s afforded polyethersulfone benzoxazoles. Most of the poly(o‐hydroxy amide)s were soluble in polar organic solvents such as N‐methyl‐2‐pyrrolidone; however, the polybenzoxazoles without the hexafluoroisopropylidene group were organic‐insoluble. The polybenzoxazoles exhibited glass‐transition temperatures (Tg) in the range of 219–282 °C by DSC and softening temperatures (Ts) of 242–320 °C by thermomechanical analysis. Thermogravimetric analyses indicated that most polybenzoxazoles were stable up to 450 °C in air or nitrogen. The 10% weight loss temperatures were recorded in the ranges of 474–593 °C in air and 478–643 °C in nitrogen. The methyl‐substituted polybenzoxazoles had higher Tg's but lower Ts's and initial decomposition temperatures compared with the corresponding unsubstituted polybenzoxazoles. For a comparative purpose, the synthesis and characterization of a series of sulfonyl polybenzoxazoles without the ether group that derived from 4,4′‐sulfonyldibenzoyl chloride and bis(o‐aminophenol)s were also reported. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2262–2270, 2001  相似文献   

19.
A novel method was developed to prepare poly(benzoxazinone‐imide) by the dealcoholization of poly(amide‐imide), having pendent ethoxycarbonyl groups, which was prepared from poly(amide acid). The poly(amide acid) was prepared from the reaction of pyromellitic dianhydride and 4,4′‐diamino‐6‐ethoxycarbonyl benzanilide. The curing behavior of the poly(amide acid) was monitored by DSC, which indicated the presence of two broad endotherms, one with maximum at 153 °C due to imide‐ring formation and the other with maximum at 359 °C due to benzoxazinone‐ring formation. The poly(amide acid) was thermally treated at 300 °C/1 h to get poly(amide‐imide) with pendent ester groups, then at 350 °C/2 h to convert into poly(benzoxazinone‐imide) by dealcoholization. Viscoelastic measurements of the poly(amide‐imide) showed that the storage modulus dropped at about 280 °C with glass‐transition temperature (Tg ) at about 340 °C. The storage modulus of poly(benzoxazinone‐imide), however, was almost constant up to 400 °C and no Tg was detected below 400 °C. Also, the tensile modulus and tensile strength of the poly(benzoxazinone‐imide) was much higher than that of the poly(amide‐imide). The 5% decomposition of poly(benzoxazinone‐imide) film was at 535 °C, which reflects its excellent thermal stability. Also, poly(benzoxazinone‐imide) showed more hydrolytic stability against alkali in comparison to polyimides. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1647–1655, 2000  相似文献   

20.
Fifteen bis(phenoxy) fluorene-containing poly(amide-imide)s III were synthesized by the direct polycondensation of 9,9-bis[4-(4-aminophenoxy)phenyl]fluorene (BAPPF) with var-ious aromatic bis(trimellitimide)s II in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Poly(amide-imide)s III having inherent vis-cosities up to 1.45 dL/g were obtained in quantitative yields. Most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these polymers were in the range of 263–315°C and the 10% weight loss temperatures were above 510°C in nitrogen. Some properties of poly(amide-imide)s III were compared with those of the corresponding isomeric poly(amide-imide)s III ′ prepared from 9,9-[4-(4-trimellitimidophenoxy)phenyl]fluorene and various aromatic diamines. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号