共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Matthew I. Gibson Neil R. Cameron 《Journal of polymer science. Part A, Polymer chemistry》2009,47(11):2882-2891
It is demonstrated here that three different α‐amino N‐carboxyanhydrides (NCAs), including for the first time O‐benzyl‐L ‐threonine NCA, can be polymerized in a controlled/“living” fashion without the need for transition metal catalysts or complex custom‐made glassware. Homopolymerizations in tetrahydrofuran gave monomodal distributions, high conversions, predictable Mn values and displayed first‐order kinetics. Chain extension experiments from poly(benzyl‐L ‐threonine), using N,N‐dimethylacetamide to avoid the formation of insoluble β‐sheets, was used to create a range of block copolypeptides of controlled structure. Monomodal molecular weight distributions are observed throughout and molecular weights agree well with predicted values, although polydispersities are generally higher than those observed using more experimentally challenging techniques. This method therefore represents a practical approach to the synthesis of well‐defined polypeptides without the requirement for specialized glassware or glove‐box techniques. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2882–2891, 2009 相似文献
3.
Hui Peng Jun Ling Zhiquan Shen 《Journal of polymer science. Part A, Polymer chemistry》2012,50(6):1076-1085
Five rare earth complexes are first introduced to catalyze ring opening polymerizations (ROPs) of γ‐benzyl‐L ‐glutamate N‐carboxyanhydride (BLG NCA) and L ‐alanine NCA (ALA NCA) including rare earth isopropoxide (RE(OiPr)3), rare earth tris(2,6‐di‐tert‐butyl‐4‐methylphenolate) (RE(OAr)3), rare earth tris(borohydride) (RE(BH4)3(THF)3), rare earth tris[bis(trimethylsilyl)amide] (RE(NTMS)3), and rare earth trifluoromethanesulfonate. The first four catalysts exhibit high activities in ROPs producing polypeptides with quantitative yields (>90%) and moderate molecular weight (MW) distributions ranging from 1.2 to 1.6. In RE(BH4)3(THF)3 and RE(NTMS)3 catalytic systems, MWs of the produced polypeptides can be controlled by feeding ratios of monomer to catalyst, which is in contrast to the systems of RE(OiPr)3 and RE(OAr)3 with little controllability over the MWs. End groups of the polypeptides are analyzed by MALDI‐TOF MS and polymerization mechanisms are proposed accordingly. With ligands of significant steric hindrance in RE(OiPr)3 and RE(OAr)3, deprotonation of 3‐NH of NCA is the only initiation mode producing a N‐rare earth metallated NCA ( i ) responsible for further chain growth, resulting in α‐carboxylic‐ω‐aminotelechelic polypeptides after termination. In the case of RE(BH4)3(THF)3 with small ligands, another initiation mode at 5‐CO position of NCA takes place simultaneously, resulting in α‐hydroxyl‐ω‐aminotelechelic polypeptides. In RE(NTMS)3 system, the protonated ligand hexamethyldisilazane (HMDS) initiates the polymerization and produces α‐amide‐ω‐aminotelechelic polypeptides. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
4.
Hans R. Kricheldorf Colin V. Lossow Nino Lomadze Gert Schwarz 《Journal of polymer science. Part A, Polymer chemistry》2008,46(12):4012-4020
The NCAs of the following five amino acids were polymerized in bulk at 120 °C without addition of a catalyst or initiator: sarcosine (Sar), L ‐alanine (L ‐Ala), D ,L ‐phenylalanine (D ,L ‐Phe), D ,L ‐leucine (D ,L ‐Leu) and D ,L ‐valine (D,L ‐Val). The virgin reaction products were characterized by viscosity measurements 13C NMR spectroscopy and MALDI‐TOF mass spectrometry. In addition to numerous low molar mass byproducts cyclic polypeptides were formed as the main reaction products in the mass range above 800 Da. Two types of cyclic oligo‐ and polypeptides were detected in all cases with exception of sarcosine NCA, which only yielded one class of cyclic polypeptides. The efficient formation of cyclic oligo‐ and polypeptides explains why high molar mass polymers cannot be obtained by thermal polymerizations of α‐amino acid NCAs. Various polymerization mechanisms were discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4012–4020, 2008 相似文献
5.
Robert A. Kowtoniuk Tao Pei Caitlin M. DeAngelo Jacob H. Waldman Erin N. Guidry J. Michael Williams Robert M. Garbaccio Stephanie E. Barrett 《Journal of polymer science. Part A, Polymer chemistry》2014,52(10):1385-1391
l ‐Ornithine‐based poly(peptides) have been widely utilized in the field of drug delivery, however few studies have been conducted examining the details of polymerization. In this article, the effects of monomer concentration, polymerization kinetics, polymer molecular weight and monomer purity were investigated using l ‐carboxybenzyl (Cbz)‐ornithine as a model monomer. The mechanism of polymerization herein follows the normal amine mechanism to produce poly(peptides) having controlled molecular weights, known chain ends and a narrow polydispersity index (PDI). A preferred monomer concentration range was determined, which required minimal polymerization times and allowed for predictable and reproducible molecular weights with narrow PDIs. The impact of monomer purity on the polymerization was established and monomer purification conditions are reported, which produce high‐purity monomer after a single recrystallization. Additionally, the optimized polymerization conditions and monomer purification protocol were combined with a sequential monomer addition technique to produce high molecular weight poly(ornithine) with a narrow PDI and known chain ends. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1385–1391 相似文献
6.
Haidong Xia Suli Kan Zhenjiang Li Jia Chen Saide Cui Wenzhuo Wu Pingkai Ouyang Kai Guo 《Journal of polymer science. Part A, Polymer chemistry》2014,52(16):2306-2315
An organocatalytic approach to controlled/living ring‐opening polymerizations (ROPs) of O‐carboxyanhydrides (OCAs) using N‐heterocyclic carbenes (NHCs) as nucleophilic catalysts has been investigated. NHCs with different structures were used in order to compare the catalytic performances in the ROP of OCA of l ‐lactic acid. 1H NMR, SEC, and MALDI‐TOF MS measurements of the products clearly indicated a controlled/living manner of the polymerization. The controlled/living nature was further confirmed by kinetic and chain extension experiments. Additionally, polylol initiators were used to produce α,ω‐dihydroxy telechelic, 3‐, and 4‐armed star‐shaped polymers. Moreover, star‐shaped diblock copolymer, bearing methyl and phenyl side groups, has been successfully synthesized with OCA/NHC system. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 . 52, 2306–2315 相似文献
7.
Hans R. Kricheldorf Colin Von Lossow Gert Schwarz 《Journal of polymer science. Part A, Polymer chemistry》2005,43(22):5690-5698
The N‐carboxyanhydrides (NCAs) of sarcosine (Sar), D ,L ‐leucine (D ,L ‐Leu), D ,L ‐phenylalanine (D ,L ‐Phe), and L ‐alanine (L ‐Ala) were polymerized in dioxane. Imidazole served as initiator and the NCA/initiator ratio was varied from 1/1 to 40/1. The isolated polypeptides were characterized by 1H NMR spectroscopy, by MALDI‐TOF mass spectrometry, by viscosity measurements, and by SEC measurements in the case of poly(sarcosine). Cyclic oligopeptides were found in all reaction products and in the case of polySar, poly(D ,L ‐Leu), and poly(D ,L ‐Phe) the cycles were the main products. In the case of poly(L ‐Ala), rapid precipitation of β‐sheet lamellaes prevented efficient cyclizations and stabilized imidazolide endgroups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5690–5698, 2005 相似文献
8.
Naoya Takahashi Shuhei Yamada Atsushi Sudo Takeshi Endo 《Journal of polymer science. Part A, Polymer chemistry》2017,55(24):3996-4002
Six 1,1‐disubstituted vinylcyclopropanes (VCP) were synthesized from glycine and amino acids bearing hydrophobic moieties, l ‐alanine, l ‐valine, l ‐leucine, l ‐isoleucine, and l ‐phenylalanine. These VCP derivatives efficiently underwent radical ring‐opening polymerization to afford the corresponding polymers bearing trans‐vinylene moiety in the main chains and the amino acid‐derived chiral moieties in the side chains. The polymers were film‐formable, and in the films of polymers bearing the glycine‐ and alanine‐derived side chains, presence of hydrogen bonding was confirmed by IR analysis. Thermogravimetric analysis of the polymers revealed that the temperatures of 5% weight loss were higher than 300 °C. Differential scanning calorimetry clarified that the polymers were amorphous ones showing glass transition temperatures in a range of 48–80 °C. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3996–4002 相似文献
9.
Hui Peng Jun Ling Yinghong Zhu Lixin You Zhiquan Shen 《Journal of polymer science. Part A, Polymer chemistry》2012,50(15):3016-3029
In this work, rare earth tris(borohydride) complexes, Ln(BH4)3(THF)3 (Ln = Sc, Y, La, and Dy), have been used to catalyze the ring‐opening polymerization of γ‐benzyl‐L ‐glutamate N‐carboxyanhydride (BLG NCA). All the catalysts show high activities and the resulting poly(γ‐benzyl‐L ‐glutamate)s (PBLGs) are recovered with high yields (≥90%). The molecular weights (MWs) of PBLG can be controlled by the molar ratios of monomer to catalyst, and the MW distributions (MWDs) are relatively narrow (as low as 1.16) depending on the rare earth metals and reaction temperatures. Block copolypeptides can be easily synthesized by the sequential addition of two monomers. The obtained P(γ‐benzyl‐L ‐glutamate‐b‐ε‐carbobenzoxy‐L ‐lysine) [P(BLG‐b‐BLL)] and P(γ‐benzyl‐L ‐glutamate‐b‐alanine) [P(BLG‐b‐ALA)] have been well characterized by NMR, gel permeation chromatography, and differential scanning calorimetry measurements. A random copolymer P(BLG‐co‐BLL) with a narrow MWD of 1.07 has also been synthesized. The polymerization mechanisms have been investigated in detail. The results show that both nucleophilic attack at the 5‐CO of NCA and deprotonation of 3‐NH of NCA in the initiation process take place simultaneously, resulting in two active centers, that is, an yttrium ALA carbamate derivative [H2BOCH2(CH)NHC(O)OLn? ] and a N‐yttriumlated ALA NCA. Propagation then proceeds on these centers via both normal monomer insertion and polycondensation. After termination, two kinds of telechelic polypeptide chains, that is, α‐hydroxyl‐ω‐aminotelechelic chains and α‐carboxylic‐ω‐aminotelechelic ones, are formed as characterized by MALDI‐TOF MS, 1H NMR, 13C NMR, 1H–1H COSY, and 1H–13C HMQC measurements. By decreasing the reaction temperature, the normal monomer insertion pathway can be exclusively selected, forming an unprecedented α‐hydroxyl‐ω‐aminotelechelic polypeptide. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
10.
Zhening Yang Tianwen Bai Jun Ling Youqing Shen 《Journal of polymer science. Part A, Polymer chemistry》2019,57(8):907-916
Differing from the moisture‐sensitive α‐amino acid N‐carboxyanhydrides (AA‐NCAs) monomers, N‐phenoxycarbonyl α‐amino acids (AA‐NPCs) can be prepared and stored in open air. In this contribution, we report that the controlled polymerizations of AA‐NPC monomers of O‐tert‐butyl‐dl ‐serine (BRS‐NPC), Nε‐benzyloxycarbonyl‐l ‐lysine (ZLL‐NPC) and Nε‐trifluoroacetyl‐l ‐lysine (FLL‐NPC) initiated by amines are surprisingly able to tolerate common nucleophilic impurities such as water and alcohols at a level of monomer concentration. The structures of polypeptides synthesized in the presence of water or alcohols agree well with the designed ones in the case of repeated chain extensions. Detailed mechanism study and density functional theory calculation reveal that the low concentration of AA‐NCA and the high activity of amines are the key factors to the controllability of AA‐NPC polymerizations. The water‐ and alcohol‐tolerant property in polymerizations of AA‐NPCs encourages the following studies on unprotected (phenolic) hydroxyl groups containing AA‐NPCs. The controllable polymerizations of N‐phenoxycarbonyl l ‐tyrosine (LT‐NPC) and N‐phenoxycarbonyl S‐(3‐hydroxypropyl)‐l ‐cysteine (HLC‐NPC) initiated by amines are confirmed and reported for the first time, which extends the library of AA‐NPCs and polypeptides as well. All the universality of library, the convenience of monomer preparation, and the controllability and water‐ and alcohol‐tolerant property of polymerization of AA‐NPCs significantly enhance the feasibility of polypeptide synthesis, making AA‐NPC approach a promising synthetic method of polypeptides. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 907–916 相似文献
11.
Wan‐Ju Tai Chen‐Yu Li Pei‐Hua Lin Jia‐Ying Li Ming‐Jen Chen Bao‐Tsan Ko 《应用有机金属化学》2012,26(10):518-527
Aluminum complexes coordinated by a C1DEABTP ligand (C1DEABTP‐H = 2‐(2H‐benzotriazol‐2‐yl)‐6‐((diethylamino)methyl)‐4‐methylphenol) were synthesized and structurally characterized. The formation of Al complexes is dependent on the stoichiometry of AlMe3 to C1DEABTP ligand ratio. The reaction of C1DEABTP‐H with AlMe3 (1.0 molar equiv.) in hexane produced mono‐adduct aluminum complex [(C1DEABTP)AlMe2] (1), but treatment of C1DEABTP‐H with 2.0 molar equiv. of AlMe3 afforded mixtures of [(C1DEABTP)Al2Me5] (2) and [(C1DEABTP)Al3Me8] (3). The penta‐coordinated bis‐adduct aluminum complex [(C1DEABTP)2AlMe] (4) was synthesized through the reaction of AlMe3 with C1DEABTP‐H (2.0 molar equiv.) in hexane. Tri‐adduct Al complex [(C1DEABTP)3Al] (5) resulted from treatment of AlMe3 with C1DEABTP‐H (3.0 equiv.); the Al center is hexa‐coordinated with three N,O‐bidentate C1DEABTP ligands. X‐ray diffraction of single crystals indicates that the bonding modes of the C1DEABTP ligands in complexes 2–3 are greatly affected when excess AlMe3 is coordinated. The optical properties and catalysis for lactone polymerizations of C1DEABTP coordinated to Al complexes were tested. Tri‐adduct Al complex 5 produced an intense green fluorescence in both solution and the solid state. Complex 4 is an active catalyst for the ring‐opening polymerization of ε‐caprolactone (ε‐CL) and L‐lactide (L‐LA) in the presence of 9‐anthracenemethanol (9‐AnOH). In ε‐CL polymerization, Al complex 4 catalyzes efficiently in both a 'controlled' and 'immortal' manner, giving polymers with the expected molecular weights and narrow polydispersity indexes. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
12.
zgül Tezgel Valentin Puchelle Haiqin Du Nicolas Illy Philippe Gugan 《Journal of polymer science. Part A, Polymer chemistry》2019,57(9):1008-1016
2,5‐Diketopiperazines (DKPs) are the smallest cyclic dipeptides found in nature with various attractive properties. In this study, we have demonstrated the successful modification of proline‐based DKPs using anionic ring‐opening polymerization (AROP) as a direct approach. Four different proline‐based DKPs with various side chains and increasing steric hindrance were used as initiating species for the polymerization of 1,2‐epoxybutane or ethoxyethyl glycidyl ether in the presence of t‐BuP4 phosphazene base. The addition of a Lewis acid, tri‐isobutyl aluminum, to the reaction mixture strongly decreased the occurrence of side reactions. Impact of the DKP side‐chain functionalities on molar mass control and dispersity was successfully evidenced. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1008–1016 相似文献
13.
Maude Le Hellaye Catherine Lefay Thomas P. Davis Martina H. Stenzel Christopher Barner‐Kowollik 《Journal of polymer science. Part A, Polymer chemistry》2008,46(9):3058-3067
The simultaneous ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) and 2‐hydroxyethyl methacrylate (HEMA) polymerization via reversible addition fragmentation chain transfer (RAFT) chemistry and the possible access to graft copolymers with degradable and nondegradable segments is investigated. HEMA and ε‐CL are reacted in the presence of cyanoisopropyl dithiobenzoate (CPDB) and tin(II) 2‐ethylhexanoate (Sn(Oct)2) under typical ROP conditions (T > 100 °C) using toluene as the solvent in order to lead to the graft copolymer PHEMA‐g‐PCL. Graft copolymer formation is evidenced by a combination of size‐exclusion chromatography (SEC) and NMR analyses as well as confirmed by the hydrolysis of the PCL segments of the copolymer. With targeted copolymers containing at least 10% weight of PHEMA and relatively small PHEMA backbones (ca. 5,000–10,000 g mol?1) the copolymer grafting density is higher than 90%. The ratio of free HEMA‐PCL homopolymer produced during the “one‐step” process was found to depend on the HEMA concentration, as well as the half‐life time of the radical initiator used. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3058–3067, 2008 相似文献
14.
Hans R. Kricheldorf Colin Von Lossow Gert Schwarz 《Journal of polymer science. Part A, Polymer chemistry》2006,44(15):4680-4695
Sarcosine N‐carboxyanhydride, D,L ‐alanine N‐carboxyanhydride, D,L ‐phenylalanine N‐carboxyanhydride, and D,L ‐leucine N‐carboxyanhydride were polymerized with pyridine or N‐ethyldiisopropylamine as the catalyst. With pyridine, cyclic oligo‐ and polypeptides were obtained in addition to water‐initiated or water‐terminated chains. The cyclopeptides were the main products in the case of sarcosine N‐carboxyanhydride and D,L ‐phenylalanine N‐carboxyanhydride. The fraction of cycles was particularly high when N‐methylpyrrolidone was used as the reaction medium. These results suggested the existence of a pyridine‐catalyzed zwitterionic mechanism. However, cyclopeptides were also obtained with N‐ethyldiisopropylamine as the catalyst. In this case, N‐deprotonation of N‐carboxyanhydrides, followed by the formation of N‐acyl N‐carboxyanhydride chain ends, was the most likely initiation mechanism. Various chain‐growth mechanisms were examined. In the case of γ‐benzyl ester‐L ‐glutamate N‐carboxyanhydride, side reactions such as the formation of pyroglutamoyl end groups were detected. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4680–4695, 2006 相似文献
15.
Bis‐ligated, homoleptic magnesium complexes 1–3 were synthesized through the reaction of 1 equiv. dibutyl magnesium with 2 equiv. β‐ketiminato ligands bearing different substituents on the nitrogen atom and 8 position on benzocyclohexanone. All of the complexes were identified by nuclear magnetic resonance (NMR) and X‐ray crystallography. Complexes 2 and 3 adopted distorted tetrahedral geometry around Mg, by chelating of two ancillary ligands, while complex 1 adopted a dimeric structure with penta‐coordination around Mg. These complexes can be used as efficient catalysts for the ring‐opening polymerization of L‐lactide, ε‐caprolactone, δ‐valerolactone (δ‐VL) and trimethylene carbonate in the presence of alcohol as a co‐initiator. With the increasing steric bulk of the ancillary ligands, the catalytic activity of Mg complexes was improved significantly. Particularly, complex 3 having the largest steric hindrance showed excellent catalytic performance for the polymerization of δ‐VL. It could polymerize 800 equiv. δ‐VL in 10 min, and produce polyvalerolactone with narrow molecular weight distributions (Mw/Mn < 1.2) at 35°C or higher temperature. No transesterification side reaction was observed. Moreover, complex 3 exhibited good tolerance to excessive alcohol and an immortal polymerization characteristic. The mechanism studies by in situ NMR demonstrated a coordination‐insertion process. Besides, it revealed that the steric bulky substituents in the active species derived from the complex and alcohol prevented the metal center from deactivation. 相似文献
16.
Orietta Monticelli Dario Cavallo Sergio Bocchini Alberto Frache Fabio Carniato Alessandro Tonelotto 《Journal of polymer science. Part A, Polymer chemistry》2011,49(22):4794-4799
The efficacy of a metal‐silsesquioxane, namely, heptaisobutyl (isopropoxyde)titanium‐polyhedral oligomeric silsesquioxanes (Ti‐POSS), as initiator of the ring‐opening polymerization of L ‐lactide (LLA) has been assessed. Indeed, as demonstrated by proton nuclear magnetic resonance (1H NMR) spectroscopy and gel permeation chromatography (GPC) measurements, a well‐controlled polymerization occurs via a coordination‐insertion mechanism. Moreover, the above reaction leads to the direct insertion of the silsesquioxane molecule into the polymer backbone, thus producing a hybrid system. Differential scanning calorimetry measurements demonstrated that in comparison with a commercial poly‐L ‐lactide (PLLA), the polymers prepared with Ti‐POSS exhibit a higher crystallinity. Indeed, the presence of silsesquioxane molecules, attached to one end of the polymer chains, has been found to appreciably affect the crystal nucleation density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
17.
Jinbao Xu Junzhe Song Stergios Pispas Guangzhao Zhang 《Journal of polymer science. Part A, Polymer chemistry》2014,52(8):1185-1192
Ring‐opening polymerization (ROP) of ε‐caprolactone (CL) using salicylic acid (SAA) as the organocatalyst and benzyl alcohol as the initiator in bulk at 80 °C successfully proceeded to give a narrowly distributed poly(ε‐caprolactone) (PCL). In addition, 2‐hydroxyethyl methacrylate, propargyl alcohol, 6‐azido‐1‐hexanol, and methoxy poly(ethylene glycol) were also used as functional initiators. The 1H NMR, SEC, and MALDI‐TOF MS measurements of the PCL clearly indicate the presence of the initiator residue at the chain end, implying that the SAA‐catalyzed ROP of CL was through the activated monomer mechanism. The kinetic experiments confirmed the controlled/living nature of the SAA‐catalyzed ROP of CL. Furthermore, the block copolymerization of CL and δ‐valerolactone successfully proceeded to give poly(ε‐caprolactone)‐block‐poly(δ‐valerolactone). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1185–1192 相似文献
18.
Anna Finne Reema Ann‐Christine Albertsson 《Journal of polymer science. Part A, Polymer chemistry》2003,41(19):3074-3082
Three different, new germanium initiators were used for ring‐opening polymerization of L ‐lactide. Chlorobenzene and 120 °C was a usable polymerization system for solution polymerization, and the results from the polymerizations depended on the initiator structure and bulkiness around the insertion site. The average molecular weights as measured by size exclusion chromatography increased linearly with the monomer conversion, and the molecular weight dispersity was around 1.2 for initiators 1 and 2 , whereas it was around 1.4 for initiator 3 . The average molecular weight of poly(L ‐lactide) could be controlled with all three initiators by adding different ratios of monomer and initiator. The reaction rate for the solution polymerization was, however, overall extremely slow. With an initial monomer concentration of 1 M and a monomer‐to‐initiator ratio of 50, the conversion was 93% after 161 h for the fastest initiator. In bulk polymerization, 160 °C, the conversion was 90% after 10 h. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3074–3082, 2003 相似文献
19.
Macrocyclic (arylene thioether ketone) oligomers together with a linear poly(phenylene sulfide ketone) oligomer were synthesized by a one‐step reaction. The macrocycles and linear oligomer were fully characterized by 13C‐NMR, H‐NMR, matrix assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS), differential scanning calorimetry (DSC) and FT‐IR. Uncatalyzed, simultaneously ring‐opening polymerization (ROP) of the macrocycles and the mixture of macrocycles and linear oligomer were carried out under dynamic heating conditions. The ROP temperature of the macrocycles decreased upon mixing it with the linear oligomer. The ROP conditions and mechanism were investigated and discussed. The macrocycles and their mixture show potential applications in high temperature adhesives and sealants. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献