首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Water‐soluble poly(ester‐carbonate) having pendent amino and carboxylic groups on the main‐chain carbon is reported for the first time. This article describes the melt ring‐opening/condensation reaction of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline (N‐CBz‐Hpr) with 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) at a wide range of molar fractions. The influence of reaction conditions such as catalyst concentration, polymerization time, and temperature on the number average molecular weight (Mn) and molecular weight distribution (Mw/Mn) of the copolymers was investigated. The polymerizations were carried out in bulk at 110 °C with 3 wt % stannous octoate as a catalyst for 16 h. The poly(ester‐carbonate)s obtained were characterized by Fourier transform infrared spectroscopy, 1H NMR, differential scanning calorimetry, and gel permeation chromatography. The copolymers synthesized exhibited moderate molecular weights (Mn = 6000–14,700 g mol?1) with reasonable molecular weight distributions (Mw/Mn = 1.11–2.23). The values of the glass‐transition temperature (Tg) of the copolymers depended on the molar fractions of cyclic carbonate. When the MBC content decreased from 76 to 12 mol %, the Tg increased from 16 to 48 °C. The relationship between the poly(N‐CBz‐Hpr‐co‐MBC) Tg and the compositions was in approximation with the Fox equation. In vitro degradation of these poly(N‐CBz‐Hpr‐co‐MBC)s was evaluated from weight‐loss measurements and the change of Mn and Mw/Mn. Debenzylation of 3 by catalytic hydrogenation led to the corresponding linear poly(ester‐carbonate), 4 , with pendent amino and carboxylic groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2303–2312, 2004  相似文献   

2.
The synthesis of hydroxyproline‐based telechelic prepolymers by the condensation polymerization of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline methyl ester was investigated. All the polymerizations were carried out in the melt with stannous octoate as the catalyst and with different diols. The products were characterized by differential scanning calorimetry, proton nuclear magnetic resonance, infrared spectrophotometry, and inherent viscosity (ηinh). According to the analytic results, the ηinh value of the prepolymers depended on the kind and amount of diols that were added. With an increase in the 1,6‐hexanediol feed from 2 to 10 mol %, there was a decrease in ηinh from 0.78 to 0.41 along with a decrease in the glass‐transition temperature (Tg ) from 63 to 42 °C. When 2 mol % of different kinds of diols were used, ηinh ranged from 0.78 to 0.21, and Tg varied from 70 to 43 °C. These new prepolymers could be linked to poly(ester‐urethane) by the chain extender 1,6‐hexamethylene diisocyanate. The poly(ester‐urethane) was amorphous, and the Tg was 76 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2449–2455, 2000  相似文献   

3.
Telechelic hydroxylated poly(3‐hydroxybutyrate) (PHB‐diol) oligomers have been successfully synthesized in 90–95% yield from high molar mass PHB by tin‐catalyzed alcoholysis with different diols (mainly 1,4‐butanediol) in diglyme. The PHB‐diol oligomers structure was studied by nuclear magnetic resonance, Fourier transformed infrared spectroscopy MALDI‐ToF MS, and size exclusion chromatography, whereas their crystalline structures, thermal properties and thermal stability were analyzed by wide angle X‐ray scattering, DSC, and thermogravimetric analyses. The kinetic of the alcoholysis was studied and the influence of (i) the catalyst amount, (ii) the diol amount, (iii) the reaction temperature, and (iv) the diol chain length on the molar mass was discussed. The influence of the PHB‐diol molar mass on the thermal stability, the thermal properties and optical properties was investigated. Then, tin‐catalyzed poly(ester‐ether‐urethane)s (PEEU) of Mn = 15,000–20,000 g/mol were synthesized in 1,2‐dichloroethane from PHB‐diol oligomers (Pester) with modified 4,4'‐MDI and different polyether‐diols (Pether) (PEG‐2000, PEG‐4000, and PPG‐PEG‐PPG). The influence of the PHB‐diol chain length, the Pether/Pester ratio, the polyether segment nature and the PEG chain length on the thermal properties and crystalline structures of PEEUs was particularly discussed. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1949–1961  相似文献   

4.
A series of novel optically active poly(ester‐imide)s (ter‐PEIs) with high glass transition temperature (Tg), good thermal stability, and solubility were successfully designed and synthesized by direct polycondensation reactions, using p‐hydroxybenzoic acid (PHB), 4,4’‐dihydroxybenzophenone, and a chiral diacid, N,N'‐(pyromellitoyl)‐bis‐L‐phenylalanine diacid as monomers. The resulting terpolymers were characterized by1H‐NMR, FTIR, element analysis, thermogravimetric analysis, different scanning calorimeter and wide‐angle x‐ray diffraction, etc. The ter‐PEIs are amorphous polymers with good heat resistance and high Tgs. They are soluble in many common polar organic solvents and show optically rotation property. The specific rotation values of the ter‐PEIs increase with the molar ratio of the chiral diacid, and the rigid PHB monomer is beneficial to increase the Tgs of the polymers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The ring‐opening copolymerization of methyl ethylene phosphate (MEP, 2‐methoxy‐2‐oxo‐1,3,2‐dioxaphospholane) and ε‐caprolactone (CL) was performed in bulk with lanthanum tris(2,6‐di‐tert‐butyl‐4‐methylphenolate)s as single‐component catalyst, resulting in poly(ester‐phosphoester) random copolymers with high molecular weight and moderate molecular weight distribution. The properties of the copolymers were characterized by differential scanning calorimetry, X‐ray diffractometer, dynamic mechanical analysis, and static water contact angle measurement. The crystallinities of the copolymers were reduced with the increase of MEP molar fraction in the products. Moreover, copolymers with enhanced hydrophilicity and lower glass transition temperature could be obtained with higher MEP content, which may provide potential applications in biomedical field. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

6.
trans‐1,4‐Cyclohexylene ring containing acid chloride monomers were incorporated into poly(arylene ether sulfone) (PAES) backbones to study their effect on mechanical and thermal properties. The trans‐1,4‐cyclohexylene ring containing acid chloride monomers were synthesized and characterized by NMR and high‐resolution mass spectrum. trans‐1,4‐Cyclohexylene containing PAESs were synthesized from the acid chloride monomers and hydroxyl terminated polysulfone oligomers with a pseudo‐interfacial method and a solution method. These PAESs, with trans‐1,4‐cyclohexylene ring containing ester linkages, were fully characterized by NMR, thermogravimetric analysis, differential scanning calorimetry (DSC), size exclusion chromatography, and dynamic mechanical analysis (DMA). The tensile properties were also evaluated. The polymers made with the pseudo‐interfacial method had relatively low molecular weights when compared to the solution method where much higher molecular weight polymers were obtained. Crystallinity was promoted in the low molecular weight biphenol‐based PAES samples with the pseudo‐interfacial method. The crystallinity was confirmed by both the DSC and the wide angle X‐ray diffraction results. The tensile test results of the high molecular weight polymers suggested that incorporation of the trans‐1,4‐cyclohexylene ring containing linkage slightly improved the ultimate elongations while maintaining the Young's moduli. The trans‐1,4‐cyclohexylene ring containing PAESs also showed higher sub‐Tg relaxations in DMA when compared with their terephthaloyl containing analog. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
A series of new strictly alternating aromatic poly(ester‐imide)s having inherent viscosities of 0.20–0.98 dL/g was synthesized by the diphenylchlorophosphate (DPCP) activated direct polycondensation of the preformed imide ring‐containing diacid, 3,3‐bis[4‐(trimellitimidophenoxy)phenyl]phthalide (I), with various bisphenols in a medium consisting of pyridine and lithium chloride. The diimide–diacid I was prepared from the condensation of 3,3‐bis[4‐(4‐aminophenoxy)phenyl]phthalide and trimellitic anhydride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents such as N‐methyl‐2‐pyrrolidone (NMP) and N,N‐dimethylacetamide (DMAc). Transparent and flexible films of these polymers could be cast from their DMAc solutions. The cast films had tensile strengths ranging 66–105 MPa, elongations at break from 7–10%, and initial moduli from 1.9–2.4 GPa. The glass‐transition temperatures of these polymers were recorded between 208–275 °C. All polymers showed no significant weight loss below 400 °C in the air or in nitrogen, and the decomposition temperatures at 10% weight loss all occurred above 460 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1090–1099, 2000  相似文献   

8.
This study applied the macromonomers and glycidyl methacrylate (GMA) to synthesize a series of the graft copolymers, poly(GMA)‐graft‐poly(Z‐L ‐lysine), and investigated the conformation of the graft copolymer. The graft copolymers were synthesized with different GMA monomer ratios (28 to 89%) and different degrees of polymerization (DP) (8 to 15) of the poly(Z‐L ‐lysine) side chain to analyze secondary structure relationships. Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), and both wide angle and small angle X‐ray scattering spectroscopy (WAXS, SAXS) were used to investigate the relationship between the microstructure and conformation of the graft copolymers and the different monomer ratios and side chain DP. In AFM images, n8‐G89 (the graft copolymer containing 89% GMA units and the macromonomer DP is 8) showed tiny and uniform rod‐like structures, and n14‐G43 (the graft copolymer containing 43% GMA units and the macromonomer DP is 14) showed uniform rod‐like structures. FTIR spectra of the graft copolymers showed that the variations of α‐helix and β‐sheet secondary structures in the graft copolymers relate to the monomer ratios of the graft copolymers. However, the X‐ray scattering patterns indicated that the graft copolymer conformations were mainly dependent on the poly(Z‐L ‐lysine) side chain length, and these results were completely in accordance with the AFM images. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4655–4669, 2009  相似文献   

9.
Well‐defined poly(L ‐lactide)‐b‐poly(ethylene oxide) (PLLA‐b‐PEO) copolymers with different branch arms were synthesized via the controlled ring‐opening polymerization of L ‐lactide followed by a coupling reaction with carboxyl‐terminated poly(ethylene oxide) (PEO); these copolymers included both star‐shaped copolymers having four arms (4sPLLA‐b‐PEO) and six arms (6sPLLA‐b‐PEO) and linear analogues having one arm (LPLLA‐b‐PEO) and two arms (2LPLLA‐b‐PEO). The maximal melting point, cold‐crystallization temperature, and degree of crystallinity (Xc) of the poly(L ‐lactide) (PLLA) block within PLLA‐b‐PEO decreased as the branch arm number increased, whereas Xc of the PEO block within the copolymers inversely increased. This was mainly attributed to the relatively decreasing arm length ratio of PLLA to PEO, which resulted in various PLLA crystallization effects restricting the PEO block. These results indicated that both the PLLA and PEO blocks within the block copolymers mutually influenced each other, and the crystallization of both the PLLA and PEO blocks within the PLLA‐b‐PEO copolymers could be adjusted through both the branch arm number and the arm length of each block. Moreover, the spherulitic growth rate (G) decreased as the branch arm number increased: G6sPLLA‐b‐PEO < G4sPLLA‐b‐PEO < G2LPLLA‐b‐PEO < GLPLLA‐b‐PEO. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2034–2044, 2006  相似文献   

10.
The crystal unit‐cell structures and the isothermal crystallization kinetics of poly(L ‐lactide) in biodegradable poly(L ‐lactide)‐block‐methoxy poly(ethylene glycol) (PLLA‐b‐MePEG) diblock copolymers have been analyzed by wide‐angle X‐ray diffraction and differential scanning calorimetry. In particular, the effects due to the presence of MePEG that is chemically connected to PLLA as well as the PLLA crystallization temperature TC are examined. Though we observe no variation of both the PLLA and MePEG crystal unit‐cell structures with the block ratio between PLLA and MePEG and TC, the isothermal crystallization kinetics of PLLA is greatly influenced by the presence of MePEG that is connected to it. In particular, the equilibrium melting temperature of PLLA, T, significantly decreases in the diblock copolymers. When the TC is high so that the crystallization is controlled by nucleation, because of the decreasing T and thereafter the nucleation density with decreasing PLLA molecular weight, the crystallinity of PLLA also decreases with a decrease in the PLLA molecular weight. While, for the lower crystallization temperature regime controlled by the growth mechanism, the crystallizability of PLLA in copolymers is greater than that of pure PLLA. This suggests that the activation energy for the PLLA segment diffusing to the crystallization site decreases in the diblocks. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2438–2448, 2006  相似文献   

11.
A series of novel types of three‐armed poly(trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline)‐block‐poly(ε‐caprolactone) (PHpr‐b‐PCL) copolymers were successfully synthesized via melt block copolymerization of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline (N‐CBz‐Hpr) and ε‐caprolactone (ε‐CL) with a trifunctional initiator trimethylolpropane (TMP) and stannous octoate (SnOct2) as a catalyst. For the homopolycondensation of N‐CBz‐Hpr with TMP initiator and SnOct2 catalyst, the number‐average molecular weight (Mn) of prepolymer increases from 530 to 3540 g mol?1 with the molar ratio of monomer to initiator (3–30), and the molecular weight distribution (Mw/Mn) is between 1.25 to 1.32. These three‐armed prepolymer PHpr were subsequently block copolymerized with ε‐caprolactone (ε‐CL) in the presence of SnOct2 as a catalyst. The Mn of the copolymer increased from 2240 to 18,840 g mol?1 with the molar ratio (0–60) of ε‐CL to PHpr. These products were characterized by differential scanning calorimetry (DSC), 1H NMR, and gel permeation chromatography. According to DSC, the glass‐transition temperature (Tg) of the three‐armed polymers depended on the molar ratio of monomer/initiator that were added. In vitro degradation of these copolymers was evaluated from weight‐loss measurements and the change of Mn and Mw/Mn. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1708–1717, 2005  相似文献   

12.
To create a novel vector for specifically delivering anticancer therapy to solid tumors, we used diafiltration to synthesize pH‐sensitive polymeric micelles. The micelles, formed from a tetrablock copolymer [poly(ethylene glycol)‐b‐poly(L ‐histidine)‐b‐poly(L ‐lactic acid)‐b‐poly(ethylene glycol)] consisted of a hydrophobic poly(L ‐histidine) (polyHis) and poly(L ‐lactic acid) (PLA) core and a hydrophilic poly(ethylene glycol) (PEG) shell, in which we encapsulated the model anticancer drug doxorubicin (DOX). The robust micelles exhibited a critical micellar concentration (CMC) of 2.1–3.5 µg/ml and an average size of 65–80 nm pH 7.4. Importantly, they showed a pH‐dependent micellar destabilization, due to the concurrent ionization of the polyHis and the rigidity of the PLA in the micellar core. In particular, the molecular weight of PLA block affected the ionization of the micellar core. Depending on the molecular weight of the PLA block, the micelles triggering released DOX at pH 6.8 (i.e. cancer acidic pH) or pH 6.4 (i.e. endosomal pH), making this system a useful tool for specifically treating solid cancers or delivering cytoplasmic cargo in vivo. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A poly(D,L ‐lactide)–bromine macroinitiator was synthesized for use in the preparation of a novel biocompatible polymer. This amphiphilic diblock copolymer consisted of biodegradable poly(D,L ‐lactide) and 2‐methacryloyloxyethyl phosphorylcholine and was formed by atom transfer radical polymerization. Polymeric nanoparticles were prepared by a dialysis process in a select solvent. The shape and structure of the polymeric nanoparticles were determined by 1H NMR, atomic force microscopy, and ζ‐potential measurements. The results of cytotoxicity tests showed the good cytocompatibility of the lipid‐like diblock copolymer poly(2‐methacryloyloxyethyl phosphorylcholine)‐block‐poly(D,L ‐lactide). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 688–698, 2007  相似文献   

14.
Three new bis(ether‐acyl chloride) monomers, 1,1‐bis[4‐(4‐chloroformylphenoxy)phenyl]cyclohexane ( 1a ), 5,5‐bis[4‐(4‐chloroformylphenoxy)phenyl]‐4,7‐methanohexahydroindan ( 1b ), and 9,9‐bis[4‐(4‐chloroformylphenoxy)phenyl]fluorene ( 1c ), were synthesized from readily available compounds. Aromatic polybenzoxazoles bearing ether and cardo groups were obtained by the low‐temperature solution polycondensation of the bis(ether‐acyl chloride)s with three bis(aminophenol)s and the subsequent thermal cyclodehydration of the resultant poly(o‐hydroxy amide)s. The intermediate poly(o‐hydroxy amide)s exhibited inherent viscosities in the range of 0.35–0.71 dL/g. All of the poly(o‐hydroxy amide)s were amorphous and soluble in many organic polar solvents, and most of them could afford flexible and tough films by solvent casting. The poly(o‐hydroxy amide)s exhibited glass‐transition temperatures (Tg's) in the range of 141–169 °C and could be thermally converted into the corresponding polybenzoxazoles approximately in the region of 240–350 °C, as indicated by the DSC thermograms. Flexible and tough films of polybenzoxazoles could be obtained by thermal cyclodehydration of the poly(o‐hydroxy amide) films. All the polybenzoxazoles were amorphous and showed an enhanced Tg but a dramatically decreased solubility as compared with their poly(o‐hydroxy amide) precursors. They exhibited Tg's of 215–272 °C by DSC and showed insignificant weight loss before 500 °C in nitrogen or air. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4014–4021, 2001  相似文献   

15.
Microwave (MW)‐assisted ring‐opening polymerization (ROP) provides a rapid and straightforward method for engineering a wide array of well‐defined poly(3‐hydroxyalkanoate)‐b‐poly(D,L ‐lactide) (PHA‐b‐PLA) diblock copolymers. On MW irradiation, the bulk ROP of D,L ‐lactide (LA) could be efficiently triggered by a series of monohydroxylated PHA‐based macroinitiators previously produced via acid‐catalyzed methanolysis of corresponding native PHAs, thus affording diblock copolyesters with tunable compositions. The dependence of LA polymerization on temperature, macroinitiator structure, irradiation time, and [LA]0/[PHA]0 molar ratio was carefully investigated. It turned out that initiator efficiency values close to 1 associated with conversions ranging from 50 to 85% were obtained only after 5 min at 115 °C. A kinetic investigation of the MW‐assisted ROP of LA gave evidence of its “living”/controlled character under the experimental conditions selected. Structural analyses and thermal properties of biodegradable diblock copolyesters were also performed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Two types of three‐arm and four‐arm, star‐shaped poly(D,L ‐lactic acid‐alt‐glycolic acid)‐b‐poly(L ‐lactic acid) (D,L ‐PLGA50‐b‐PLLA) were successfully synthesized via the sequential ring‐opening polymerization of D,L ‐3‐methylglycolide (MG) and L ‐lactide (L ‐LA) with a multifunctional initiator, such as trimethylolpropane and pentaerythritol, and stannous octoate (SnOct2) as a catalyst. Star‐shaped, hydroxy‐terminated poly(D,L ‐lactic acid‐alt‐glycolic acid) (D,L ‐PLGA50) obtained from the polymerization of MG was used as a macroinitiator to initiate the block polymerization of L ‐LA with the SnOct2 catalyst in bulk at 130 °C. For the polymerization of L ‐LA with the three‐arm, star‐shaped D,L ‐PLGA50 macroinitiator (number‐average molecular weight = 6800) and the SnOct2 catalyst, the molecular weight of the resulting D,L ‐PLGA50‐b‐PLLA polymer linearly increased from 12,600 to 27,400 with the increasing molar ratio (1:1 to 3:1) of L ‐LA to MG, and the molecular weight distribution was rather narrow (weight‐average molecular weight/number‐average molecular weight = 1.09–1.15). The 1H NMR spectrum of the D,L ‐PLGA50‐b‐PLLA block copolymer showed that the molecular weight and unit composition of the block copolymer were controlled by the molar ratio of L ‐LA to the macroinitiator. The 13C NMR spectrum of the block copolymer clearly showed its diblock structures, that is, D,L ‐PLGA50 as the first block and poly(L ‐lactic acid) as the second block. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 409–415, 2002  相似文献   

17.
Poly(D ,L ‐lactide) and poly(D ,L ‐lactide‐co‐glycolide) with various composition and with one methacrylate and one carboxylate end group were synthesized and grafted onto poly(vinyl alcohol) (PVA) via the carboxylate group. The graft copolymers were crosslinked via the methacrylate groups using a free radical initiator. The polymer networks were characterized by means of NMR and studied qualitatively by means of IR spectroscopy. The influence of the glycolide content in the polyester grafts and of the number of ester units in the grafts on thermal properties and swellability were studied as well. The high swellability in water is characteristic of all hydrogels. Differential scanning calorimetry (DSC) showed a single glass transition temperature that occurs in the range between 51 and 69 °C. Thermogravimetric analysis (TGA) of the networks showed the main loss in weight in the temperature range between 290 and 370 °C. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4536–4544, 2007  相似文献   

18.
The poly(L ‐lactide) (PLA)‐degrading ability of actinomycetes obtained from culture collections was examined by the formation of clear zones on PLA‐emulsified agar plates. Using 41 genera (105 strains) of actinomycetes with phylogenetic affiliations based on 16S rRNA sequences, PLA degraders were found to be limited to members of the family Pseudonocardiaceae and related genera. They included Amycolatopsis, Saccharothrix, Lentzea, Kibdelosporangium, and Streptoalloteichus. A large number of PLA degraders were widely distributed within the genus Saccharothrix. Most strains forming clear zones on PLA‐emulsified agar plates also formed clear zones on silk fibroin agar plates. Saccharothrix species showed an ability to degrade PLA films and assimilate degradation products in liquid cultures. No significant change of the molecular weight and polydispersity (M w/M n) of the remaining film fragments was confirmed. After cultivation for two weeks, many irregular holes/pits on the surface of the film due to the colonization of microorganisms were observed by scanning electron microscopy.

Scanning electron micrograph of the surface of PLA film: A. orientalis subsp. orientalis IFO 12362 after 14 d.  相似文献   


19.
Photosensitive poly(amic acid ester)s (PAEs) with 2‐hydroxy‐4‐oxo‐hept‐5‐enyl side group were simply synthesized from a non‐photosensitive polyamic acid (PAA), which was prepared from cyclobutane‐1,2,3,4‐tetracarboxylic dianhydride (CBDA) and 4,4′‐diaminodiphenyl ether (DDE) in N‐methyl‐2‐pyrrolidinone (NMP). 1‐oxiranyl‐pent‐3‐en‐2‐one was added to the poly(amic acid) solution to give the photosensitive PAEs by a ring opening esterification of the poly(amic acid). The esterification reaction was conducted with changing a reaction time and amounts of 1‐oxiranyl‐pent‐3‐en‐2‐one. The degree of esterification (DOE) increased with increasing esterification reaction time and amounts of 1‐oxiranyl‐pent‐3‐en‐2‐one. A photo‐lithography evaluation for the PAE‐D4 with the highest DOE was conducted in the presence of 1‐[4‐(phenylthio)phenyl]‐2‐(O‐benzoyloxime)‐1,2‐octanedione (PPBO) as a photoinitiator at a wavelength of 365 nm using a high‐pressure mercury lamp. The normalized film thicknesses for PAE‐D3 were measured with various post‐exposure baking (PEB) temperatures, which showed that the optimum PEB temperature was 120°C. The resolution of the resulting polyimide film cured at 250°C for 60 min was 25 µm. The initial decomposition temperature of the polyimide film was around 354°C and there was no weight loss at the temperature of 250–350°C. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Biodegradable poly(ester‐phosphoester)s bearing multiple chloroethyl groups were synthesized facilely by the ring‐opening copolymerization of 2‐(2‐chloroethoxy)‐2‐oxo‐1,3,2‐dioxaphospholane (CEP) and ε‐caprolactone (CL) in the presence of lanthanum tris(2,6‐di‐tert‐butyl‐4‐methylphenolate)s (La(DBMP)3) as single‐component catalyst under mild conditions. Then the quaternization reaction was carried out between the halide copolymers and a series of N,N‐dimethyl alkylamines to give poly(ester‐phosphoester)s containing ammonium groups with various charge density and alkyl chain length. The antibacterial properties of these cationic poly(esterphosphoester)s were evaluated by OD600 and zone of inhibition methods against gram‐negative (Escherichia coli) and gram‐positive (Staphylococcus aureus) bacteria. Cationic poly(esterphosphoester)s with long alkyl chain on the ammonium groups show excellent antibacterial activity for both gram‐negative and gram‐positive bacteria even with low charge density. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3667–3673  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号