首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We applied the Infinite Basis (IB) set extrapolation and Double Hybrid Density Functional Theory (DHDF) to calculate the databases of atomization energies, ionization energies, electron affinities, reaction barrier heights, proton affinities, alkyl bond dissociation energies, and noncovalent interactions. The Complete Basis Set (CBS) limit is estimated by extrapolating the hybrid density functional theory and PT2 energies using extrapolation functions including exponential, inverse power, modified exponential, and the combination of the these functions. We found that the combination of B2KPLYP/cc-pV[D|T]Z (which is the extrapolation based on the energies calculated in cc-pVDZ and cc-pVTZ) gives results in quadruple-ζ quality. However, if we want to reach the ~2 kcal/mol chemical accuracy limit, the cc-pV[T|Q]Z is required. Similar results with various extrapolation functions obtained, because the IB parameters were determined by minimizing the averaged mean unsigned error of the calculated databases. We generalized the IB set extrapolation to include more than two basis sets, but we found that extrapolation with two basis sets is satisfactory to give reasonable results. The largest error occurred in the databases of the electron affinities and the weak interactions between the noble gas and the nonpolar molecules. We expect that performing the DHDF-IB scheme with the basis sets augmented by diffuse basis functions will further improve the results.  相似文献   

2.
Planar H-bonded and stacked structures of guanine...cytosine (G.C), adenine...thymine (A...T), 9-methylguanine...1-methylcytosine (mG...mC), and 9-methyladenine...1-methylthymine (mA...mT) were optimized at the RI-MP2 level using the TZVPP ([5s3p2d1f/3s2p1d]) basis set. Planar H-bonded structures of G...C, mG...mC, and A...T correspond to the Watson-Crick (WC) arrangement, in contrast to mA...mT for which the Hoogsteen (H) structure is found. Stabilization energies for all structures were determined as the sum of the complete basis set limit of MP2 energies and a (DeltaE(CCSD(T)) - DeltaE(MP2)) correction term evaluated with the cc-pVDZ(0.25,0.15) basis set. The complete basis set limit of MP2 energies was determined by two-point extrapolation using the aug-cc-pVXZ basis sets for X = D and T and X = T and Q. This procedure is required since the convergency of the MP2 interaction energy for the present complexes is rather slow, and it is thus important to include the extrapolation to the complete basis set limit. For the MP2/aug-cc-pVQZ level of theory, stabilization energies for all complexes studied are already very close to the complete basis set limit. The much cheaper D-->T extrapolation provided a complete basis set limit close (by less than 0.7 kcal/mol) to the more accurate T-->Q term, and the D-->T extrapolation can be recommended for evaluation of complete basis set limits of more extended complexes (e.g. larger motifs of DNA). The convergency of the (DeltaE(CCSD(T)) - DeltaE(MP2)) term is known to be faster than that of the MP2 or CCSD(T) correlation energy itself, and the cc-pVDZ(0.25,0.15) basis set provides reasonable values for planar H-bonded as well as stacked structures. Inclusion of the CCSD(T) correction is essential for obtaining reliable relative values for planar H-bonding and stacking interactions; neglecting the CCSD(T) correction results in very considerable errors between 2.5 and 3.4 kcal/mol. Final stabilization energies (kcal/mol) for the base pairs studied are very substantial (A...T WC, 15.4; mA...mT H, 16.3; A...T stacked, 11.6; mA...mT stacked, 13.1; G...C WC, 28.8; mG...mC WC, 28.5; G...C stacked, 16.9; mG...mC stacked, 18.0), much larger than published previously. On the basis of comparison with experimental data, we conclude that our values represent the lower boundary of the true stabilization energies. On the basis of error analysis, we expect the present H-bonding energies to be fairly close to the true values, while stacked energies are still expected to be about 10% too low. The stacking energy for the mG...mC pair is considerably lower than the respective H-bonding energy, but it is larger than the mA...mT H-bonding energy. This conclusion could significantly change the present view on the importance of specific H-bonding interactions and nonspecific stacking interactions in nature, for instance, in DNA. Present stabilization energies for H-bonding and stacking energies represent the most accurate and reliable values and can be considered as new reference data.  相似文献   

3.
To examine the effects of pi-stacking interactions between aromatic amino acid side chains and adenine bearing ligands in crystalline protein structures, 26 toluene/(N9-methyl)adenine model configurations have been constructed from protein/ligand crystal structures. Full geometry optimizations with the MP2 method cause the 26 crystal structures to collapse to six unique structures. The complete basis set (CBS) limit of the CCSD(T) interaction energies has been determined for all 32 structures by combining explicitly correlated MP2-R12 computations with a correction for higher-order correlation effects from CCSD(T) calculations. The CCSD(T) CBS limit interaction energies of the 26 crystal structures range from -3.19 to -6.77 kcal mol (-1) and average -5.01 kcal mol (-1). The CCSD(T) CBS limit interaction energies of the optimized complexes increase by roughly 1.5 kcal mol (-1) on average to -6.54 kcal mol (-1) (ranging from -5.93 to -7.05 kcal mol (-1)). Corrections for higher-order correlation effects are extremely important for both sets of structures and are responsible for the modest increase in the interaction energy after optimization. The MP2 method overbinds the crystal structures by 2.31 kcal mol (-1) on average compared to 4.50 kcal mol (-1) for the optimized structures.  相似文献   

4.
Stabilization energies of the H-bonded and stacked structures of a DNA base pair were studied in the crystal structures of adenine-thymine, cytosine-guanine, and adenine-cytosine steps as well as in the 5'-d(GCGAAGC)-3' hairpin (utilizing the NMR geometry). Stabilization energies were determined as the sum of the complete basis set (CBS) limit of MP2 stabilization energies and the Delta E(CCSD(T)) - Delta E(MP2) correction term evaluated with the 6-31G*(0.25) basis set. The CBS limit was determined by a two-point extrapolation using the aug-cc-pVXZ basis sets for X = D and T. While the H-bonding energies are comparable to those of base pairs in a crystal and a vacuum, the stacking energies are considerably smaller in a crystal. Despite this, the stacking is still important and accounts for a significant part of the overall stabilization. It contributes equally to the stability of DNA as does H-bonding for AT-rich DNAs, while in the case of GC-rich DNAs it forms about one-third of the total stabilization. Interstrand stacking reaches surprisingly large values, well comparable to the intrastrand ones, and thus contributes significantly to the overall stabilization. The hairpin structure is characterized by significant stacking, and both guanine...cytosine pairs possess stacking energies larger than 11.5 kcal/mol. A high portion of stabilization in the studied hairpin comes from stacking (similar to that found for AT-rich DNAs) despite the fact that it contains two GC Watson-Crick pairs having very large H-bonding stabilization. The DFT/B3LYP/6-31G** method yields satisfactory values of interaction energies for H-bonded structures, while it fails completely for stacking.  相似文献   

5.
Stacking energies in low-energy geometries of pyrimidine, uracil, cytosine, and guanine homodimers were determined by the MP2 and CCSD(T) calculations utilizing a wide range of split-valence, correlation-consistent, and bond-functions basis sets. Complete basis set MP2 (CBS MP2) stacking energies extrapolated using aug-cc-pVXZ (X = D, T, and for pyrimidine dimer Q) basis sets equal to -5.3, -12.3, and -11.2 kcal/mol for the first three dimers, respectively. Higher-order correlation corrections estimated as the difference between MP2 and CCSD(T) stacking energies amount to 2.0, 0.7, and 0.9 kcal/mol and lead to final estimates of the genuine stacking energies for the three dimers of -3.4, -11.6, and -10.4 kcal/mol. The CBS MP2 stacking-energy estimate for guanine dimer (-14.8 kcal/mol) was based on the 6-31G(0.25) and aug-cc-pVDZ calculations. This simplified extrapolation can be routinely used with a meaningful accuracy around 1 kcal/mol for large aromatic stacking clusters. The final estimate of the guanine stacking energy after the CCSD(T) correction amounts to -12.9 kcal/mol. The MP2/6-31G(0.25) method previously used as the standard level to calculate aromatic stacking in hundreds of geometries of nucleobase dimers systematically underestimates the base stacking by ca. 1.0-2.5 kcal/mol per stacked dimer, covering 75-90% of the intermolecular correlation stabilization. We suggest that this correction is to be considered in calibration of force fields and other cheaper computational methods. The quality of the MP2/6-31G(0.25) predictions is nevertheless considerably better than suggested on the basis of monomer polarizability calculations. Fast and very accurate estimates of the MP2 aromatic stacking energies can be achieved using the RI-MP2 method. The CBS MP2 calculations and the CCSD(T) correction, when taken together, bring only marginal changes to the relative stability of H-bonded and stacked base pairs, with a slight shift of ca. 1 kcal/mol in favor of H-bonding. We suggest that the present values are very close to ultimate predictions of the strength of aromatic base stacking of DNA and RNA bases.  相似文献   

6.
We have calculated the thermochemical parameters for the reactions H(2)SO(4) + H(2)O <--> H(2)SO(4).H(2)O and H(2)SO(4) + NH(3) <--> H(2)SO(4).NH(3) using the B3LYP and PW91 functionals, MP2 perturbation theory and four different basis sets. Different methods and basis sets yield very different results with respect to, for example, the reaction free energies. A large part, but not all, of these differences are caused by basis set superposition error (BSSE), which is on the order of 1-3 kcal mol(-1) for most method/basis set combinations used in previous studies. Complete basis set extrapolation (CBS) calculations using the cc-pV(X+d)Z and aug-cc-pV(X+d)Z basis sets (with X = D, T, Q) at the B3LYP level indicate that if BSSE errors of less than 0.2 kcal mol(-1) are desired in uncorrected calculations, basis sets of at least aug-cc-pV(T+d)Z quality should be used. The use of additional augmented basis functions is also shown to be important, as the BSSE error is significant for the nonaugmented basis sets even at the quadruple-zeta level. The effect of anharmonic corrections to the zero-point energies and thermal contributions to the free energy are shown to be around 0.4 kcal mol(-1) for the H(2)SO(4).H(2)O cluster at 298 K. Single-point CCSD(T) calculations for the H(2)SO(4).H(2)O cluster also indicate that B3LYP and MP2 calculations reproduce the CCSD(T) energies well, whereas the PW91 results are significantly overbinding. However, basis-set limit extrapolations at the CCSD(T) level indicate that the B3LYP binding energies are too low by ca. 1-2 kcal/mol. This probably explains the difference of about 2 kcal mol(-1) for the free energy of the H(2)SO(4) + H(2)O <--> H(2)SO(4).H(2)O reaction between the counterpoise-corrected B3LYP calculations with large basis sets and the diffusion-based experimental values of S. M. Ball, D. R. Hanson, F. L Eisele and P. H. McMurry (J. Phys. Chem. A. 2000, 104, 1715). Topological analysis of the electronic charge density based on the quantum theory of atoms in molecules (QTAIM) shows that different method/basis set combinations lead to qualitatively different bonding patterns for the H(2)SO(4).NH(3) cluster. Using QTAIM analysis, we have also defined a proton transfer degree parameter which may be useful in further studies.  相似文献   

7.
8.
Accurate binding energies of the benzene dimer at the T and parallel displaced (PD) configurations were determined using the single- and double-coupled cluster method with perturbative triple correction (CCSD(T)) with correlation-consistent basis sets and an effective basis set extrapolation scheme recently devised. The difference between the estimated CCSD(T) basis set limit electronic binding energies for the T and PD shapes appears to amount to more than 0.3 kcal/mol, indicating the PD shape is a more stable configuration than the T shape for this dimer in the gas phase. This conclusion is further strengthened when a vibrational zero-point correction to the electronic binding energies of this dimer is made, which increases the difference between the two configurations to 0.4-0.5 kcal/mol. The binding energies of 2.4 and 2.8 kcal/mol for the T and PD configurations are in good accord with the previous experimental result from ionization potential measurement.  相似文献   

9.
The leading cause of error in standard coupled cluster theory calculations of thermodynamic properties such as atomization energies and heats of formation originates with the truncation of the one-particle basis set expansion. Unfortunately, the use of finite basis sets is currently a computational necessity. Even with basis sets of quadruple zeta quality, errors can easily exceed 8 kcal/mol in small molecules, rendering the results of little practical use. Attempts to address this serious problem have led to a wide variety of proposals for simple complete basis set extrapolation formulas that exploit the regularity in the correlation consistent sequence of basis sets. This study explores the effectiveness of six formulas for reproducing the complete basis set limit. The W4 approach was also examined, although in lesser detail. Reference atomization energies were obtained from standard coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) calculations involving basis sets of 6ζ or better quality for a collection of 141 molecules. In addition, a subset of 51 atomization energies was treated with explicitly correlated CCSD(T)-F12b calculations and very large basis sets. Of the formulas considered, all proved reliable at reducing the one-particle expansion error. Even the least effective formulas cut the error in the raw values by more than half, a feat requiring a much larger basis set without the aid of extrapolation. The most effective formulas cut the mean absolute deviation by a further factor of two. Careful examination of the complete body of statistics failed to reveal a single choice that out performed the others for all basis set combinations and all classes of molecules.  相似文献   

10.
The excitation energy in the multiphoton ionization spectrum of the trans-1-naphthol/N(2) cluster shows only a small red shift with respect to isolated naphthol, indicating a van der Waals pi-bound structure rather than a hydrogen-bonded one. To confirm this interpretation, high-level electronic structure calculations were performed for several pi- and hydrogen-bonded isomers of this cluster. The calculations were carried out at the second order M?ller-Plesset (MP2) level of perturbation theory with the family of correlation consistent basis sets up to quintuple-zeta quality including corrections for the basis set superposition error and extrapolation to the MP2 complete basis set (CBS) limit. We report the optimal geometries, vibrational frequencies, and binding energies (D(e)), also corrected for harmonic zero-point energies (D(0)), for three energetically low-lying isomers. In all calculations the lowest energy structure was found to be an isomer with the N(2) molecule bound to the pi-system of the naphthol ring carrying the OH group. In the CBS limit its dissociation energy was computed to be D(0) = 2.67 kcal/mol (934 cm(-1)) as compared to D(0) = 1.28 kcal/mol (448 cm(-1)) for the H-bound structure. The electronic structure calculations therefore confirm the assignment of the experimental electronic spectrum corresponding to a van der Waals pi-bound structure. The energetic stabilization of the pi-bound isomer with respect to the hydrogen-bonded one is rather unexpected when compared with previous findings in related systems, in particular phenol/N(2).  相似文献   

11.
A systematic theoretical investigation on a series of dimeric complexes formed between some halocarbon molecules and electron donors has been carried out by employing both ab initio and density functional methods. Full geometry optimizations are performed at the Moller-Plesset second-order perturbation (MP2) level of theory with the Dunning's correlation-consistent basis set, aug-cc-pVDZ. Binding energies are extrapolated to the complete basis set (CBS) limit by means of two most commonly used extrapolation methods and the aug-cc-pVXZ (X = D, T, Q) basis sets series. The coupled cluster with single, double, and noniterative triple excitations [CCSD(T)] correction term, determined as a difference between CCSD(T) and MP2 binding energies, is estimated with the aug-cc-pVDZ basis set. In general, the inclusion of higher-order electron correlation effects leads to a repulsive correction with respect to those predicted at the MP2 level. The calculations described herein have shown that the CCSD(T) CBS limits yield binding energies with a range of -0.89 to -4.38 kcal/mol for the halogen-bonded complexes under study. The performance of several density functional theory (DFT) methods has been evaluated comparing the results with those obtained from MP2 and CCSD(T). It is shown that PBEKCIS, B97-1, and MPWLYP functionals provide accuracies close to the computationally very expensive ab initio methods.  相似文献   

12.
The geometries of 35 conformers of Me(SiMe2)nMe (n = 4, 1; n = 5, 2; n = 6, 3; n = 7, 4) were optimized at the MP2/VTDZ level, and CCSD(T) single-point calculations were done at three MP2/VTDZ conformer geometries of 1. The relative ground-state energies of the conformers of 1-4 in the gas phase were obtained from the MP2/VTDZ electronic energy, zero-point vibrational energy, and thermal corrections at 0, 77, and 298 K. Relative energies in an alkane solvent at 77 and 298 K were obtained by the addition of solvation energies, obtained from the SM5.42R model. The calculated energies of 26 of the conformers (n = 4-6) have been least-squares fitted to a set of 15 additive increments associated with each Si-Si bond conformation and each pair of adjacent bond conformations, with mean deviations of 0.06-0.20 kcal/mol. An even better fit for the energies of 24 conformers (mean deviations, 0.01-0.09 kcal/mol) has been obtained with a larger set of 19 increments, which also contained contributions from selected combinations of conformations of three adjacent bonds. The utility of the additive increments for the prediction of relative conformer energies in the gas phase and in solution has been tested on the remaining nine conformers (n = 6, 7). With the improved increment set, the average deviation from the SM5.42R//MP2 results for solvated conformers at 298 K was 0.18 kcal/mol, and the maximum error was 0.98 kcal/mol.  相似文献   

13.
It is well-known that the basis set limit is difficult to reach in correlated post Hartree-Fock ab initio calculations. One possible route forward is to employ basis set extrapolation schemes. In order to avoid prohibitively expensive calculations, the highest level calculation (typically based on the "gold standard" coupled cluster theory with single, double, and perturbative triple excitations, CCSD(T)) is only performed with the smallest basis set, and the remaining basis set incompleteness is estimated at a lower level of theory, typically second-order M?ller-Plesset perturbation theory (MP2). In this work, we provide a comprehensive investigation of alternative schemes where the MP2 extrapolation is replaced by the coupled-electron pair approximation, version 1 (CEPA/1) or the local pair natural orbital version of this method (LPNO-CEPA/1). It is shown that the MP2 method achieves apparent accuracy only due to error cancellation. Systematically more accurate results at small additional computational cost are obtained if the MP2 step is replaced by LPNO-CEPA/1. The errors of LPNO-CEPA/1 relative to canonical CEPA/1 are negligible. Owing to the highly systematic nature of the deviations between canonical and LPNO methods, basis set extrapolation reduces the LPNO errors in the total energies by 1 order of magnitude (~0.2 kcal/mol) and errors in energy differences to essentially zero. Using the CCSD(T)/LPNO-CEPA/1-based extrapolation scheme, new reference values are proposed for the recently published S66 set of interaction energies. The deviations between the new values and the original interactions energies are mostly very small but reach values up to 0.3 kcal/mol.  相似文献   

14.
MP2 and CCSD(T) complete basis set (CBS) limit interaction energies and geometries for more than 100 DNA base pairs, amino acid pairs and model complexes are for the first time presented together. Extrapolation to the CBS limit is done by using two-point extrapolation methods and different basis sets (aug-cc-pVDZ - aug-cc-pVTZ, aug-cc-pVTZ - aug-cc-pVQZ, cc-pVTZ - cc-pVQZ) are utilized. The CCSD(T) correction term, determined as a difference between CCSD(T) and MP2 interaction energies, is evaluated with smaller basis sets (6-31G** and cc-pVDZ). Two sets of complex geometries were used, optimized or experimental ones. The JSCH-2005 benchmark set, which is now available to the chemical community, can be used for testing lower-level computational methods. For the first screening the smaller training set (S22) containing 22 model complexes can be recommended. In this case larger basis sets were used for extrapolation to the CBS limit and also CCSD(T) and counterpoise-corrected MP2 optimized geometries were sometimes adopted.  相似文献   

15.
Dimers composed of benzene (Bz), 1,3,5-triazine (Tz), cyanogen (Cy) and diacetylene (Di) are used to examine the effects of heterogeneity at the molecular level and at the cluster level on pi...pi stacking energies. The MP2 complete basis set (CBS) limits for the interaction energies (E(int)) of these model systems were determined with extrapolation techniques designed for correlation consistent basis sets. CCSD(T) calculations were used to correct for higher-order correlation effects (deltaE(CCSD)(T)(MP2)) which were as large as +2.81 kcal mol(-1). The introduction of nitrogen atoms into the parallel-slipped dimers of the aforementioned molecules causes significant changes to E(int). The CCSD(T)/CBS E(int) for Di-Cy is -2.47 kcal mol(-1) which is substantially larger than either Cy-Cy (-1.69 kcal mol(-1)) or Di-Di (-1.42 kcal mol(-1)). Similarly, the heteroaromatic Bz-Tz dimer has an E(int) of -3.75 kcal mol(-1) which is much larger than either Tz-Tz (-3.03 kcal mol(-1)) or Bz-Bz (-2.78 kcal mol(-1)). Symmetry-adapted perturbation theory calculations reveal a correlation between the electrostatic component of E(int) and the large increase in the interaction energy for the mixed dimers. However, all components (exchange, induction, dispersion) must be considered to rationalize the observed trend. Another significant conclusion of this work is that basis-set superposition error has a negligible impact on the popular deltaE(CCSD)(T)(MP2) correction, which indicates that counterpoise corrections are not necessary when computing higher-order correlation effects on E(int). Spin-component-scaled MP2 (SCS-MP2 and SCSN-MP2) calculations with a correlation-consistent triple-zeta basis set reproduce the trends in the interaction energies despite overestimating the CCSD(T)/CBS E(int) of Bz-Tz by 20-30%.  相似文献   

16.
The MP2 complete basis set (CBS) limit for the binding energy of the two low-lying water octamer isomers of D2d and S4 symmetry is estimated at -72.7+/-0.4 kcal/mol using the family of augmented correlation-consistent orbital basis sets of double through quintuple zeta quality. The largest MP2 calculation with the augmented quintuple zeta (aug-cc-pV5Z) basis set produced binding energies of -73.70 (D2d) and -73.67 kcal/mol (S4). The effects of higher correlation, computed at the CCSD(T) level of theory, are estimated at <0.1 kcal/mol. The newly established MP2/CBS limit for the water octamer is reproduced quite accurately by the newly developed all atom polarizable, flexible interaction potential (TTM2-F). The TTM2-F binding energies of -73.21 (D2d) and -73.24 kcal/mol (S4) for the two isomers are just 0.5 kcal/mol (or 0.7%) larger than the MP2/CBS limit.  相似文献   

17.
Hydrogen-bonded nucleic acids base pairs substantially contribute to the structure and stability of nucleic acids. The study presents reference ab initio structures and interaction energies of selected base pairs with binding energies ranging from -5 to -47 kcal/mol. The molecular structures are obtained using the RI-MP2 (resolution of identity MP2) method with extended cc-pVTZ basis set of atomic orbitals. The RI-MP2 method provides results essentially identical with the standard MP2 method. The interaction energies are calculated using the Complete Basis Set (CBS) extrapolation at the RI-MP2 level. For some base pairs, Coupled-Cluster corrections with inclusion of noniterative triple contributions (CCSD(T)) are given. The calculations are compared with selected medium quality methods. The PW91 DFT functional with the 6-31G basis set matches well the RI-MP2/CBS absolute interaction energies and reproduces the relative values of base pairing energies with a maximum relative error of 2.6 kcal/mol when applied with Becke3LYP-optimized geometries. The Becke3LYP DFT functional underestimates the interaction energies by few kcal/mol with relative error of 2.2 kcal/mol. Very good performance of nonpolarizable Cornell et al. force field is confirmed and this indirectly supports the view that H-bonded base pairs are primarily stabilized by electrostatic interactions.  相似文献   

18.
The five singly and doubly hydrogen bonded dimers of formamide are calculated at the correlated level by using resolution of identity M?ller-Plesset second-order perturbation theory (RIMP2) and the coupled cluster with singles, doubles, and perturbative triples [CCSD(T)] method. All structures are optimized with the Dunning aug-cc-pVTZ and aug-cc-pVQZ basis sets. The binding energies are extrapolated to the complete basis set (CBS) limit by using the aug-cc-pVXZ (X = D, T, Q) basis set series. The effect of extending the basis set to aug-cc-pV5Z on the geometries and binding energies is studied for the centrosymmetric doubly N-H...O bonded dimer FA1 and the doubly C-H...O bonded dimer FA5. The MP2 CBS limits range from -5.19 kcal/mol for FA5 to -14.80 kcal/mol for the FA1 dimer. The DeltaCCSD(T) corrections to the MP2 CBS limit binding energies calculated with the 6-31+G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets are mutually consistent to within < or =0.03 kcal/mol. The DeltaCCSD(T) correction increases the binding energy of the C-H...O bonded FA5 dimer by 0.4 kcal/mol or approximately 9% over the distance range +/-0.5 Angstrom relative to the potential minimum. This implies that the ubiquitous long-range C-H...O interactions in proteins are stronger than hitherto calculated.  相似文献   

19.
The water-methanol dimer can adopt two possible configurations (WdM or MdW) depending on whether the water or the methanol acts as the hydrogen bond donor. The relative stability between the two configurations is less than 1 kcal/mol, and as a result, this dimer has been a challenging system to investigate using either theoretical or experimental techniques. In this paper, we present a systematic study of the dependence of the geometries, interaction energies, and harmonic frequencies on basis sets and treatment of electron correlation for the two configurations. At the highest theory level, MP2/aug-cc-pVQZ//MP2/aug-cc-pVTZ, interaction energies of -5.72 and -4.95 kcal/mol were determined for the WdM and MdW configurations, respectively, after correcting for basis set superposition error using the Boys-Bernardi counterpoise scheme. Extrapolating to the complete basis set limit resulted in interaction energies of -5.87 for WdM and -5.16 kcal/mol for MdW. The energy difference between the two configurations is larger than the majority of previously reported values, confirming that the WdM complex is preferred, in agreement with experimental observations. The effects that electron correlation have on the geometry were investigated by performing optimization at the MP2(full), MP4, and CCSD levels of theory. The approach trajectories for the formation of each dimer configuration are presented and the importance of these trajectories in the development of parameters for use in classical force fields is discussed.  相似文献   

20.
Seven different types of Slater type basis sets for the elements H (Z = 1) up to E118 (Z = 118), ranging from a double zeta valence quality up to a quadruple zeta valence quality, are tested in their performance in neutral atomic and diatomic oxide calculations. The exponents of the Slater type functions are optimized for the use in (scalar relativistic) zeroth-order regular approximated (ZORA) equations. Atomic tests reveal that, on average, the absolute basis set error of 0.03 kcal/mol in the density functional calculation of the valence spinor energies of the neutral atoms with the largest all electron basis set of quadruple zeta quality is lower than the average absolute difference of 0.16 kcal/mol in these valence spinor energies if one compares the results of ZORA equation with those of the fully relativistic Dirac equation. This average absolute basis set error increases to about 1 kcal/mol for the all electron basis sets of triple zeta valence quality, and to approximately 4 kcal/mol for the all electron basis sets of double zeta quality. The molecular tests reveal that, on average, the calculated atomization energies of 118 neutral diatomic oxides MO, where the nuclear charge Z of M ranges from Z = 1-118, with the all electron basis sets of triple zeta quality with two polarization functions added are within 1-2 kcal/mol of the benchmark results with the much larger all electron basis sets, which are of quadruple zeta valence quality with four polarization functions added. The accuracy is reduced to about 4-5 kcal/mol if only one polarization function is used in the triple zeta basis sets, and further reduced to approximately 20 kcal/mol if the all electron basis sets of double zeta quality are used. The inclusion of g-type STOs to the large benchmark basis sets had an effect of less than 1 kcal/mol in the calculation of the atomization energies of the group 2 and group 14 diatomic oxides. The basis sets that are optimized for calculations using the frozen core approximation (frozen core basis sets) have a restricted basis set in the core region compared to the all electron basis sets. On average, the use of these frozen core basis sets give atomic basis set errors that are approximately twice as large as the corresponding all electron basis set errors and molecular atomization energies that are close to the corresponding all electron results. Only if spin-orbit coupling is included in the frozen core calculations larger errors are found, especially for the heavier elements, due to the additional approximation that is made that the basis functions are orthogonalized on scalar relativistic core orbitals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号