首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retention of hydrophilic compounds on porous graphitic carbon (PGC) is afforded by polar interactions with induced dipoles within this polarizable stationary phase. These interactions depend on the redox state of PGC, which can be influenced by application of an electrical field or by chemical means. We explored the impact of oxidizing and reducing agents on the retention of fluorescence labeled neutral oligosaccharides. Malto-oligosaccharides were employed as simple model system. Subsequently, the effects on the retention of glycans typical for immunoglobulin G (IgG) antibodies were investigated. Chemical oxidation of the PGC surface increased the retention of all analytes tested. Selectivities were significantly altered by the redox treatment, emphasizing the need for controlling the redox state of PGC to achieve reproducible conditions. Furthermore a column pre-conditioning protocol is presented, which allowed for reproducible chromatography of neutral IgG glycans.  相似文献   

2.
This work describes chromatographic properties of reversed-phase/cation-exchange/anion-exchange trimodal stationary phases. These stationary phases were based on high-purity porous spherical silica particles coated with nano-polymer beads using an electrostatically driven self-assembly process. The inner-pore area of the material was modified covalently with an organic layer that provided both reversed-phase and anion-exchange properties while the outer surface was coated with nano-sized polymer beads with strong cation-exchange characteristics. This design ensured spatial separation of the anion-exchange and the cation-exchange regions, and allowed reversed-phase, anion-exchange and cation-exchange retention mechanisms to function simultaneously. Chromatographic evaluation of ions and small molecules suggested that retention of ionic analytes was influenced by the ionic strength, pH, and mobile phase organic solvent content, and governed by both ion-exchange and hydrophobic interactions. Meanwhile, neutral analytes were retained by hydrophobic interaction and was mainly affected by mobile phase organic solvent content. Depending on the specific application, selectivity could be optimized by adjusting the anion-exchange/cation-exchange capacity ratio (selectivity), which was achieved experimentally by using porous silica particles with different surface areas.  相似文献   

3.
The retention behaviour of a series of 15 n-alkylbenzenes and pentylbenzene structural isomers and benzene were investigated using porous graphitic carbon (PGC) and octadecyl-bonded silica (ODS) stationary phases. Shorter chain n-alkylbenzenes and benzene (n = 0–6), and all the pentylbenzene isomers were more strongly retained on ODS, although the selectivity was greater with PGC. For the pentylbenzene analytes the degree of branching in the alkyl chain at the position adjacent to the aromatic ring affects retention on PGC, with higher retention in less branched molecules. Molecular modelling studies have provided new insights into the geometry of aromatic π–π stacking interactions in retention on PGC. For alkylbenzenes with high branching at the position adjacent to the ring, the preferred geometry of association with the surface is with the branched chain directed away from the surface, a geometry not seen in the other alkylbenzenes. The most energetically favoured orientation for interaction between analytes and the PGC surface was found to be cofacial for toluene and ethylbenzene, whereas for other analytes this interaction was in a face-edge orientation. The alternative geometry of association observed with both toluene and ethylbenzene may explain the enhanced retention of these two analytes on PGC compared with their longer chain analogues. Quantitative structure–retention relationships revealed the importance of compactness in analyte structure during retention on PGC, with decreased compactness (associated with longer chain length and reduced chain branching) improving retention.  相似文献   

4.
The nature and extent of mixed-mode retention mechanisms evident for three structurally related, agglomerated, particle-based stationary phases were evaluated. These three agglomerated phases were Thermo Fisher ScientificIon PacAS11-HC – strong anion exchange, Thermo Fisher Scientific IonPac CS10 – strong cation-exchange PS-DVB, and the Thermo Fisher Scientific Acclaim Trinity P1silica-based substrate, which is commercially marketed as a mixed-mode stationary phase. All studied phases can exhibit zwitterionic and hydrophobic properties, which contribute to the retention of charged organic analytes. A systematic approach was devised to investigate the relative ion-exchange capacities and hydrophobicities for each of the three phases, together with the effect of eluent pH upon selectivity, using a specifically selected range of anionic, cationic and neutral aromatic compounds. Investigation of the strong anion-exchange column and the Trinity P1 mixed-mode substrate, in relation to ion-exchange capacity and pH effects, demonstrated similar retention behaviour for both the anionic and ampholytic solutes, as expected from the structurally related phases. Further evaluation revealed that the ion-exchange selectivity of the mixed-mode phase exhibited properties similar to that of the strong anion-exchange column, with secondary cation-exchange selectivity, albeit with medium to high anion-exchange and cation-exchange capacities, allowing selective retention for each of the anionic, cationic and ampholytic solutes. Observed mixed-mode retention upon the examined phases was found to be a sum of anion- and cation-exchange interactions, secondary ion-exchange and hydrophobic interactions, with possible additional hydrogen bonding. Hydrophobic evaluation of the three phases revealed log P values of 0.38–0.48, suggesting low to medium hydrophobicity. These stationary phases were also benchmarked against traditional reversed-phase substrates namely, octadecylsilica YMC-Pac Pro C18 and neutral μPS-DVB resin IonPac NS1-5u, yielding log P values of 0.57 and 0.52, respectively.  相似文献   

5.
Several procedures are available for simulating and optimising separations in ion chromatography (IC), based on the application of retention models to an extensive database of analyte retention times on a wide range of columns. These procedures are subject to errors arising from batch-to-batch variability in the synthesis of stationary phases, or when using a column having a different diameter to that used when the database was acquired originally. Approaches are described in which the retention database can be recalibrated to accommodate changes in the stationary phase (ion-exchange selectivity coefficient and ion-exchange capacity) or in the column diameter which lead to changes in phase ratio. The entire database can be recalibrated for all analytes on a particular column by performing three isocratic separations with two analyte ions. The retention data so obtained are then used to derive a "porting" equation which is employed to generate the required simulated separation. Accurate prediction of retention times is demonstrated for both anions and cations on 2mm and 0.4mm diameter columns under elution conditions which consist of up to five sequential isocratic or linear gradient elution steps. The proposed approach gives average errors in retention time prediction of less than 3% and the correlation coefficient was 0.9849 between predicted and observed retention times for 344 data points comprising 33 anionic or cationic analytes, 5 column internal diameters and 8 complex elution profiles.  相似文献   

6.
Enzymatically digested oligosaccharides of kappa-carrageenans were separated on a porous graphitic carbon (PGC) column and characterised on-line by electrospray ionisation mass spectrometry (ESI-MS). Two different developing ions were applied. Among them ammonium hydrogencarbonate showed more eluting power as it should on normal anion-exchange stationary phases. The oligosaccharides were detected by ESI-MS as fully deprotonated oligosaccharides.  相似文献   

7.
The retention mechanism and chromatographic behavior for different polar analytes under hydrophilic interaction chromatography (HILIC) conditions have been studied by application of different mobile phases and stationary phases to various analytes at different temperatures. In addition to the commonly accepted mechanism of analyte liquid-liquid partitioning between mobile phase and water-enriched solvent layer which is partially immobilized onto the surface of the stationary phase, hydrogen-bonding, hydrophobic interaction, and ion-exchange interactions may also be involved. The predominant retention mechanism in HILIC separation is not always easily predictable. It can depend not only on the characteristics of the analytes but also on the selection of mobile and stationary phase compositions. The objective of this review is to evaluate the potential application of column temperature and mobile phase composition toward improving HILIC selectivity. The functional groups from analyte structures, stationary phase materials and organic mobile phase solvents will be highlighted.  相似文献   

8.
The retention behaviour of the three positional isomers of monosubstituted sulfobutyl ether-beta-cyclodextrin was investigated on a porous graphitic carbon (PGC) column. The influence of the mobile phase composition (nature and concentration of organic and electronic modifiers) was studied as well as the effect of column temperature. These hydrophilic and anionic analytes were highly retained on the PGC stationary phase compared to octadecyl bonded phases. The retention is mainly governed by a reversed-phase mechanism with electronic interaction playing a secondary role. An increase in solute retention and efficiency with temperature was observed. Successful isocratic separation with satisfactory baseline resolution of the three isomers of monosubstituted sulfobutyl ether-beta-cyclodextrin was achieved at 75 degrees C on a Hypercarb column by using ammonium acetate as electronic modifier in water-acetonitrile (83:17). The chromatographic methodology developed can be easily used for relative quantification of each isomer within a mixture and can be applied for semi-preparative purification of each one. The evaporative light scattering detector allows the detection of these non UV-visible absorbing molecules.  相似文献   

9.
Silica monoliths coated with functionalised latex particles have been prepared for use in monolithic ion-exchange capillary electrochromatography (IE-CEC) for the separation of inorganic anions. The ion-exchange monoliths were prepared using 70 nm quaternary ammonium, anion-exchange latex particles, which were bound electrostatically to a monolithic silica skeleton synthesised in a fused silica capillary. The resulting stationary phases were characterised in terms of their chromatographic performance and capacity. The capacity of a 50 microm diameter 25 cm latex-coated silica monolith was found to be 0.342 nanoequivalents and 80,000 theoretical plates per column were typically achieved for weakly retained anions, with lower efficiency being observed for analytes exhibiting strong ion-exchange interaction with the stationary phase. The electroosmotic flow (EOF) was reversed after the latex-coating was applied (-25.96 m2 V(-1) s(-1), relative standard deviation (RSD) 2.8%) and resulted in anions being separated in the co-EOF mode. Ion-exchange interactions between the analytes and the stationary phase were manipulated by varying the ion-exchange selectivity coefficient and the concentration of a competing ion (phosphate or perchlorate) present in the electrolyte. Large concentrations of competing ion (greater than 1M phosphate or 200 mM perchlorate) were required to completely suppress ion-exchange interactions, which highlighted the significant retention effects that could be achieved using monolithic columns compared to open tubular columns, without the problems associated with particle-packed columns. The latex-coated silica monoliths were easily produced in bulk quantities and performed reproducibly in acidic electrolytes. The high permeability and beneficial phase ratio makes these columns ideal for micro-LC and preconcentration applications.  相似文献   

10.
The potential of methacrylate-based mixed-mode monolithic stationary phases bearing sulfonic acid groups for the separation of positively charged analytes (alkylanilines, amino acids, and peptides) by capillary electrochromatography (CEC) is investigated. The retention mechanism of protonated alkylanilines as positively charged model solutes on these negatively charged mixed-mode stationary phases is investigated by studying the influence of mobile phase and stationary phase parameters on the corrected retention factor which was calculated by taking the electrophoretic mobility of the solutes into consideration. It is shown that both solvophobic and ion-exchange interactions contribute to the retention of these analytes. The dependence of the corrected retention factor on (1) the concentration of the counter ion ammonium and (2) the number of methylene groups in the alkyl chain of the model analytes investigated shows clearly that a one-site model (solvophobic and ion-exchange interactions take place simultaneously at a single type of site) has to be taken to describe the retention behaviour observed. Comparison of the CEC separation of these charged analytes with electrophoretic mobilities determined by open-tubular capillary electrophoresis shows that mainly chromatographic interactions (solvophobic and ion-exchange interactions) are responsible for the selectivity observed in CEC, while the electrophoretic migration of these analytes plays only a minor role.  相似文献   

11.
The electrospray ionization (ESI) voltage is shown to interfere with liquid chromatographic separations performed with packed porous graphitic carbon (PGC) capillary columns. This interference is ascribed to the presence of an electric field over the conductive column in the absence of an earth point between the column and the ESI emitter. The current evolved alters the chromatographic behavior of the catecholamine metabolite 3-O-methyl-DOPA significantly, as both peak splitting and a dramatic decrease in the retention time were observed. Furthermore, the response from the mass spectrometer was decreased by 33% at the same time. A related compound, tyrosine, exhibited decreased retention times but no peak splitting, whereas no shifts in the retention times (or peak splitting) were seen for the less retained dopamine and noradrenaline. When the current through the PGC column was eliminated by the use of an earth point between the column and the ESI emitter, the chromatographic behavior of the column was found to return slowly to normal after hours of equilibration with 60 : 40 (v/v) methanol-ammonium formate buffer of pH 2.9. The behavior of the PGC column with and without the earth point was found to be highly reproducible during a period of 1 month. We propose that the effect of the ESI voltage on the chromatographic behavior of the PGC column is due to associated redox reactions affecting both the PGC particles and the analytes. It is concluded that (for analytical reasons), care should be taken to ensure that no current is flowing through the chromatographic system when interfacing PGC columns, and conducting parts in general, to ESI mass spectrometry.  相似文献   

12.
对阴离子性化合物在强阴离子交换毛细管电色谱中的保留行为进行了研究。发现样品中固定相上的吸附使样品的保留因子k^*变小,柱小的分离能力减小;而电压的增大,使酸性样品的k^*也增大,并且电压的改变也能改变分离的选择性;样品保留因子的对数值随着缓冲液离子强度的对数值的增大而线性减小;样品也强阴子交换毛细管电谱和毛细管区带电泳中有不同的保留行为。  相似文献   

13.
In this study, we compare the separation of basic drugs on several octadecyl silane bonded silica (ODS) phases and a polybutadiene-coated zirconia (PBD-ZrO2) phase. The retention characteristics were investigated in detail using a variety of cationic drugs as probe solutes. The ODS phases were selected to cover a relatively wide range in silanol activity and were studied with ammonium phosphate eluents at pH 3.0 and 6.0. Compared to any of the ODS phases, the PBD-ZrO2 phase showed very significant differences in selectivities towards these drugs. Due to the presence of both reversed-phase and ion-exchange interactions between the stationary phase and the basic analyte on ODS and PBD-ZrO2, mixed-mode retention takes place to some extent on both types of phases. However, very large differences in the relative contributions from ion-exchange and reversed-phase interactions on the two types of phases led to quite different selectivities. When phosphate is present in the eluent and adsorbs on the surface, the PBD-ZrO2 phase takes on a high negative charge over a wide pH range due to phosphate adsorption on its surface. On ODS phases, ion-exchange interactions result from the interactions between protonated basic compounds and ionized residual silanol groups. Since the pH of the eluent influences the charge state of the silanol groups, the ion-exchange interactions vary in strength depending on pH. At pH 6.0, the ion-exchange interactions are strong. However, at pH 3.0 the ion-exchange interactions on ODS are significantly smaller because the silanol groups are less dissociated at the lower pH. Thus, not only are the selectivities of the ODS and PBD-ZrO2 phases different but quite different trends in retention are observed on these two types of phases as the pH of the eluent is varied. More importantly, by using the large set of "real" basic analytes we show the extreme complexity of the chromatographic processes on the reversed stationary phases. Both the test condition and solute property influence the column performance. Therefore, use of only one or two probe solutes is not sufficient for column ranking.  相似文献   

14.
LC retention data have been measured using various stationary phases with an emphasis on highly polar to moderately polar neutral organic compounds having octanol‐water partition coefficients (Kow) in log units between 0 and 3. The relationships between the retention factor measured in water and the octanol‐water partition coefficient are linear but with different slopes for octadecyl (C18) silicas, and two polystyrene divinylbenzene (PS‐DVB) phases with low and high surface areas. These relationships confirm that highly cross‐linked polymers can provide more than 1000‐times higher retention values than C18 silicas for moderately polar analytes but close values for highly polar ones. They also explain why C18 silicas and polymers are equivalent for the separation of very polar analytes. In contrast, due to a different retention mechanism, no relation exists between the retention shown by porous graphitic carbons (PGC) and analyte hydrophobicity, but highly polar analytes are in general much more strongly retained than by any other sorbent. The potential of PGC for both the extraction and the separation of analytes is shown. Due to the difference in separation mechanism, PGC is the analytical phase that should be used for confirmation of the identity of analytes instead of a cyanopropylsilica column as recommended in some environmental procedures. Applications are presented for the trace‐determination of triazines and polar degradation products in ground and surface water with detection limits below the 0.1 μg/L level.  相似文献   

15.
Separations of common inorganic anions were carried out on three different surfactant coated media using carbonate/bicarbonate eluents with suppressed conductivity detection. Graphitic carbon columns (porous graphitic carbon and carbon-clad zirconia) packed with 3 microm particles have been converted into anion-exchange stationary phases by equilibration with the cationic surfactants: didodecyldimethylammonium bromide (DDAB); cetyltrimethylammonium bromide (CTAB); and cetylpyridinium chloride (CPC). Additionally, an ethylene-bridged silica column was studied with CPC coatings. Porous graphitic carbon (PGC) columns coated with DDAB exhibited pressure increases and loss of resolution at higher capacities. CPC coatings on PGC exhibited better repeatability and efficiencies of 5.0 x 10(4)plates/m. However, CPC coatings exhibited a 15% loss in retention factor with <1.2 x 10(3) column volumes on PGC. Conversely, the ethylene-bridged silica column showed complete failure in less than 8 h of use. As with PGC, carbon-clad zirconia coated with CPC showed an initial loss of capacity, but thereafter was stable for more than 1.7 x 10(3) column volumes (t(r) RSD<2%).  相似文献   

16.
Paull B  Bashir W 《The Analyst》2003,128(4):335-344
The effect of column temperature upon the retention of metal ions on sulfonated and mono-, di-, and amino-carboxylated cation exchange columns has been investigated. The retention of alkali, alkaline earth and transition metal ions on each of the above types of cation exchanger was studied over the temperature range 19-65 degrees C. A major difference between the behaviour of mono- and divalent metal ions was shown on each of the above stationary phases, with the monovalent alkali metals exhibiting clearly exothermic behaviour (a decrease in retention with increased temperature) under acidic eluent conditions and an apparent relationship between retention factor and the magnitude of the temperature effect. The effect of temperature upon alkaline earth metal ions was less defined, although strongly endothermic behaviour (increase in retention with temperature) could be seen on all stationary phases through correct choice of eluent. The transition metal ions studied showed endothermic behaviour on all four stationary phases, with the sulfonated column unexpectedly showing the largest increases in retention. The above behaviour can be partially explained through the dominance of the type of solute-stationary phase interaction governing retention. In several of the above columns, both ion-exchange and surface complexation interactions can occur, with the effects of temperature indicating which process dominates under specific eluent conditions.  相似文献   

17.
A major challenge in selecting an appropriate stationary phase for diastereomeric separation is that it is difficult to predict which of the commercially available stationary phases could achieve the required liquid chromatographic (LC) separation. This work describes the selection and evaluation of a porous graphitic carbon (PGC) column coupled with tandem mass spectrometry (MS/MS) for the simultaneous quantitation of an experimental drug candidate (I), its two diastereomeric metabolites (II and III), and its demethylated metabolite (IV) in rat plasma. In addition, we investigated the PGC column for the separation of another drug candidate (VI), its two diastereomeric metabolites (VII and VIII) and its ketone metabolite (IX). The PGC column showed excellent chromatographic resolution for the two diastereomers II and III, as well as for VII and VIII. In contrast, the required resolution for the diastereomers II and III could not be achieved using silica-bonded C(18), C(30), phenyl, perfluorinated, polar embedded and polar end-capped phases. The PGC column showed ruggedness with excellent reproducibility of retention times, peak symmetry and response over a period of more than 400 injections of a plasma acetonitrile-precipitation extract. Excellent accuracy and precision were achieved, with accuracy of 94-108% and intra- and inter-run precision within 9%. This work indicates that PGC is a valuable addition to the repertoire of LC columns used for quantitative LC/MS/MS bioanalysis, especially where the separation and quantitation of diastereomeric analytes is involved.  相似文献   

18.
This work describes the separation of acidic, basic and neutral organic compounds as well as inorganic anions in a single run by capillary electrochromatography employing a stationary phase which exhibits both strong anion-exchange and reversed-phase chromatographic characteristics. The positive surface charge of this stationary phase provided a substantial anodic electroosmotic flow. The analytes were separated by a mixed-mode mechanism which comprised chromatographic interactions (hydrophobic interactions, ion-exchange) as well as electrophoretic migration. The influence of ion-exchange and hydrophobic interactions on the retention/migration of the analytes could be manipulated by varying the concentration of a competing ion and/or the amount of organic modifier present in the background electrolyte. Additionally the effects of pH changes on both the chromatographic interactions as well as the electrophoretic migration of the analytes were investigated.  相似文献   

19.
The validity of the extended Tanaka column characterization procedure against the retention behavior of 101 analytes of widely differing properties chromatographed on five differing stationary phase chemistries has been established using a chemometric technique called principal component analysis (PCA). It was concluded that the simple and conveniently determined column characterization parameters covered the same space in the PCA loading plot as the retention times for the 101 differing analytes. This confirms that the ten column characterization parameters of the extended Tanaka protocol encode the same information as the retention times of the 101 analytes. Significant selectivity differences were observed between stationary phases and the mobile‐phase modifiers – MeOH and MeCN. PCA contribution plots served as a convenient way to highlight specific selectivity differences between stationary phases. logD values exhibited a poor correlation with retention indicating that retention in RP‐LC is not solely dictated by the analyte's hydrophobicity. The use of MeOH was found to generate greater selectivity differences with the five stationary phases than when MeCN is used.  相似文献   

20.
A new on-line redox derivatization technique using double separation columns and one redox derivatization unit was presented for enhancement of separation selectivity of HPLC. This on-line redox derivatization HPLC system consisted of two separation columns and one redox derivatization unit placed between them. The redox reaction proceeds in the derivatization unit so that an analyte compound migrates as its original form in the first column, while as its oxidized or reduced form in the second column. The retention of the analytes is controlled by the lengths of the two separation columns in this system. We adopted a small column packed with porous graphitic carbon (PGC) as a redox derivatization unit and two C18 silica columns treated with hexadecyltrimethylammonium chloride as separation columns. The redox activity of PGC and the efficiency of the on-line redox derivatization HPLC system for enhancement of separation selectivity were investigated using EDTA complexes of some metal ions. Original untreated PGC and PGC treated with hydrogen peroxide completely oxidized Co(II)-EDTA and converted it to Co(III)-EDTA, while the other metal complexes eluted as their original oxidation states throughout the system. Selective separation and determination of cobalt in a reference copper alloy by the developed method were demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号