首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The electrical resistivity of bulk Ge20Te80 has been measured as a function of pressure and temperature. At 5 GPa, an amorphous semiconductor-to-crystalline metal transition has been observed. The sample recovered from the high pressure cell, after the application of 7 GPa, has a face-centred cubic structure with a lattice constant of 6·42 A. In crystalline sample, the semiconductor-to-metal transition occurs at 7 GPa. The thermoelectric power has also been measured for glassy samples in the temperature range 300–240 K.  相似文献   

2.
In the present work, the amorphous to crystalline phase transition of chalcogenide glass Se65Te20Ag15 has been studied using differential scanning calorimetric (DSC) measurements. The heating rate dependence of crystallization peaks has been used for the determination of activation energies of glass transition (E g) and crystallization (E c). Different non-isothermal methods have been used for this purpose. Other useful kinetic parameters such as the order parameter (n), the numerical factor of crystallization mechanism (m) and the frequency factor (K o) of the rate constant (K) have been also determined.  相似文献   

3.
Raman and optical absorption studies under pressure have been conducted on KTb(MoO4)2 up to 35.5 GPa. A phase transformation occurs at 2.7 GPa when the crystal is pressurized at ambient temperature in a hydrostatic pressure medium. The sample changes to a deep yellow color at the transition and visibly contracts in theα-axis direction. The color shifts to red on further pressure increase. The Raman spectral features and the X-ray powder pattern change abruptly at the transition indicating a structural change. The pressure-induced transition appears to be a property of the layer-type alkali rare earth dimolybdates. However, the color change at the transition in KTb(MoO4)2 is rather unusual and is attributed to a valence change in Tb initiated by the structural transition and consequent intervalence charge transfer between Tb and Mo.In situ high pressure X-ray diffraction data suggest that phase II could be orthorhombic with a unit cell having 3 to 4% smaller volume than that of phase I.  相似文献   

4.
Abstract

The electrical resistivity measurements have been carried out on bulk AsxTe100-x-ySey (30 ≤ ′ ≤ 50; 10 ≤ y ≤ 25) glasses up to 8 Gpa pressure, and temperature down to 77 K. All the As-Te-Se glasses are found to exhibit a continuous semiconductor to metal transition under pressure. However, glasses with a mean coordination number Z ≥ 2.4 show an initial plateau in resistivity, followed by a continuous decrease. This behaviour is consistent with the earlier observation on the As-Te glasses and is explained in terms of the changes in the local structure of the chalcogenide glasses with the composition.  相似文献   

5.
ABSTRACT

The structural properties of pyrochlore Eu2Zr2O7 under high pressure have been studied by using Raman spectroscopy and in situ angle-dispersive X-ray diffraction (ADXRD). The results of Raman spectra indicate that Eu2Zr2O7 undergoes a reversible structural change around 21.2?GPa. The results of Rietveld refinements from in situ ADXRD data indicate that the ordered pyrochlore structure (Fd-3m) transforms to the defect-cotunnite structure (Pnma) at 26.5?GPa. The phase transition is irreversible and the transformation process is mainly induced by the accumulations of anti-site defects of the cation sublattice and Frenkel defects on the anion sublattice. Besides, the <Zr–O> bonds should play a more important role than the <Eu–O> bonds in the process of the phase transformation.  相似文献   

6.
High pressure behavior of CaB6 with cubic crystal structure is investigated by means of energy dispersive X-ray diffraction and by employing in situ resistance measurement in a diamond anvil cell. Two newcome high pressure phase transitions are found with pressure ranging from ambient to 26 GPa. The first one at 12 GPa is a structural phase transition from CsCl-type structure to orthogonal structure, which is reflected by both the X-ray diffraction and the resistance variation. The other one at 3.7 GPa is suggested to be an electronic transition, which is observed only in resistance measurement. The diffraction pattern recovered while the pressure is released to 0 GPa with a pressure hysteresis over 11 GPa, which implies the reversibility of the two phase transitions. Bulk moduli of the cubic and orthogonal phases are estimated by fitting the data to a Brich-Murnaghan equation of state equal to 169.9 and 48.2 GPa, respectively.  相似文献   

7.
The structural, electronic and vibrational properties of InN under pressures up to 20 GPa have been investigated using the pseudo-potential plane wave method (PP-PW). The generalized-gradient approximation (GGA) in the frame of density functional theory (DFT) approach has been adopted. It is found that the transition from wurtzite (B4) to rocksalt (B1) phase occurs at a pressure of approximately 12.7 GPa. In addition, a change from a direct to an indirect band gap is observed. The mechanism of these changes is discussed. The phonon frequencies and densities of states (DOS) are derived using the linear response approach and density functional perturbation theory (DFPT). The properties of phonons are described by the harmonic approximation method. Our results show that phonons play an important role in the mechanism of phase transition and in the instability of B4 (wurtzite) just before the pressure of transition. At zero pressure our data agree well with recently reported experimental results.  相似文献   

8.
Raman scattering and synchrotron X-ray diffraction have been used to investigate the high-pressure behavior of l-alanine. This study has confirmed a structural phase transition observed by Raman scattering at 2.3 GPa and identified it as a change from orthorhombic to tetragonal structure. Another phase transformation from tetragonal to monoclinic structure has been observed at about 9 GPa. From the equation of state, the zero-pressure bulk modulus and its pressure derivative have been determined as (31.5±1.4) GPa and 4.4±0.4, respectively.  相似文献   

9.
The full-potential linear muffin-tin orbital method (FP-LMTO) within the local density approximation (LDA) is used to calculate the electronic band structures and the total energies of MgTe in its stable (NiAs-B8) and high pressure phases. The latter provide us with the ground state properties such us lattice parameter, bulk modulus and its pressure derivatives. The transition pressure at which this compound undergoes the structural phase transition from the NiAs to CsCl phase is calculated. The energy band gaps and their volume and pressure dependence in the stable NiAs-B8 phase are investigated. The ground state properties, the transition pressure are found to agree with the experimental and other theoretical results. The elastic constants at equilibrium in both NiAs and CsCl structure are also determined.  相似文献   

10.
The effect of pressure on the 2H and 4H polytype of PbI2 has been investigated by Raman and optical absorption spectroscopy, using the diamond anvil cell. The 2H-polytype undergoes pressure-induced phase transitions at 5 kbar and near 30 kbar. The 4H-polytype exhibits phase transitions near 8 kbar and above 30 kbar. The Raman modes abruptly change at these pressures. The optical absorption edge shifts red at the rate of 15±1 MeV/kbar in the 2H-PbI2 and at the rate of 7 MeV/kbar in phase II. The latter phase is most likely to possess a 3d-structure and not a layer type. The possible structures for the high pressure phases are discussed.  相似文献   

11.
We report phase transition and stability of MoS2 with and without the presence of sulfur melt under high-pressure and high-temperature conditions. Rhombohedral (3R) phase is found to be a high-temperature phase of MoS2 at high pressures. Excess sulfur melt catalyzes the hexagonal (2H) to rhombohedral (3R) phase transformation and lowers the conversion temperature by more than 280 K. Boundary between 2H and 3R phases has been delineated with a negative slope. Based on experimental observations, sulfur-catalyzed 2H→3R transformation mechanisms are proposed involving atomic exchange between MoS2 and sulfur, which is different from the case of without excess sulfur that proceeds through rotation and translation of the S–Mo–S sandwich layers.  相似文献   

12.
Phase transitions of the anti-fluorite compounds Mg2Ge and Mg2Sn under high pressure were investigated using the first-principles plane-wave method within the pseudopotential and generalized gradient approximations. The calculated results show that Mg2Ge and Mg2Sn undergo two first-order phase transitions at high pressure and the sequence of the pressure-induced phase transitions is from the anti-fluorite to the anti-cotunnite, and then to the Ni2In-type structure. The high pressure behaviors of Mg2Ge and Mg2Sn are similar to Mg2Si and the isostructural alkali-metal oxide Li2O. Moreover, the electronic and optical properties of both the anti-fluorite and the high-pressure phases are presented.  相似文献   

13.
In situ high-energy X-ray diffraction of Nd60Fe30Al10 and Ce70Al10Cu20 metallic glasses is carried out under high pressure. During compression, Ce70Al10Cu20 and Nd60Fe30Al10 exhibit a polyamorphic transition from low-density state below 2.0 and 10.0?GPa, to high-density state above 8.4 and 21.1?GPa, respectively. The intermediate hysteresis regions are the mixture of both phases. Electrical resistance measurements under high pressure show that Ce70Al10Cu20 display a discontinuous change in pressure dependence curve of resistivity at around 1.7?GPa. The addition of Fe atom gives a significant standoff of phase transition pressure in Nd60Fe30Al10. The results in this work suggest that the solute element and microstructure of lanthanide solvent aggregates have implications on the polyamorphic transition in metallic glasses.  相似文献   

14.
H. Kumar  N. Chandel 《Phase Transitions》2016,89(11):1103-1118
In this communication, we report the results of calorimetric measurements on the samples of recently synthesized multi-component glassy alloys of Se78?xTe20Sn2Bix (0 ≤ x ≤ 6) system. For calorimetric study of glass transition kinetics, differential scanning calorimetry (DSC) technique has been used in non-isothermal mode. Peak glass transition temperature (Tg) is determined using the DSC scans. Kinetic parameters A and B of glass transition are determined using heating rate dependence of Tg. Activation energy of glass transition (Eg) has been calculated using Moynihan and Kissinger methods. Glass-forming ability and thermal stability are also determined using Hurby and Saad–Poulin relations, respectively.  相似文献   

15.
The electronic structure and magnetic properties of Co-doped Heusler alloys (Mn1−xCox)2 VGa (x=0.0, 0.25, 0.5, 0.75, 1.0) have been studied by first-principles calculations. The results show that the lattice constants decrease with increasing Co content except x=1.0. The spin polarization for x=0.5 is only 34%, much lower than the other concentrations. The compounds of x=0.0, 0.25 show nearly half-metallicity because the Fermi level slightly touches the valence bands. And the compounds of x=0.75, 1.0 exhibit the half-metallic character with 100% spin polarization. It is found the local moments of Mn(Co) basically show a linear increasing trend while the moments of V show a linear decreasing trend with increasing doping concentration. However, the local moments for x=0.5 quite depart from the linear trend. The majority-spin component at the Fermi level increases while the minority-spin component at the Fermi level decreases with the substitution of Co atoms for Mn atoms when x≤0.75. For x≥0.75, the majority-spin component remains more or less the same and the gap in the minority DOS increases with Co doping. The majority spin states are shifted to valence bands and the majority spin states around EF increase due to a leakage of charge from the unoccupied spin-up states to the occupied majority states with increasing Co content.  相似文献   

16.
本文用电子计算机计算Na_2O-B_2O_3-SiO_2玻璃系统的NMR数据,并根据实验结果,应用相图原理,提出了一种新的玻璃结构模型.本文认为组份简单的玻璃与相同成分化合物的结构相似,而多组份玻璃则是由相图中最邻近的同成份熔融化合物组成的混合物.  相似文献   

17.
A glass system with chemical formula xBi2O3-(30−x)CdO-10B2O3-20Fe2O3-40P2O5 (0≤x≤30) wt% is prepared to be used as radiation shield. The mass attenuation coefficient and half value layer of the glass system to gamma rays have been measured experimentally and compared with those determined from theoretical calculations using the mixture rule of WinXCom program. A database of effective mass removal cross-sections for fast neutrons is also introduced in this work. The obtained results of this study are correlated to the structural properties of these glasses obtained from their IR spectra and the influence of gamma and neutrons irradiation on these structural properties.  相似文献   

18.
First-principles calculations based on density functional theory were used to study the high-pressure phases of both ZnF2 and CdF2. We found that the sequence of the pressure-induced phase transitions is: Rutile (P42/mnm) ↦ CaCl2 (Pnnm) ↦ PdF2 (Pa-3) and CaF2 (Fm3m) ↦ PbCl2 (Pnma) ↦ Ni2In (P63/mmc) for ZnF2 and CdF2 respectively. In ZnF2 the behavior of the ground-state total energy, of the Gibbs free energy and of the lattice constant vs. pressure shown that the phase transition at 4 GPa from the rutile-type phase to the CaCl2-type phase is a second-order phase transition. The mechanism of the structural change was also revealed by the transition from the PbCl2-type phase to the Ni2In-type phase in CdF2. Moreover, the high-pressure behavior of divalent metal fluorides was compared and discussed.  相似文献   

19.
Alternating Differential Scanning Calorimetric (ADSC) studies show that Se rich As20Se80-xAgx (0 ≤ x ≤ 15) glasses exhibit two endothermic glass transitions and two exothermic crystallization peaks; the observed thermal behavior has been understood on the basis that As20Se80-xAgx glasses are microscopically phase separated, containing Ag2Se phases embedded in an As-Se backbone. With increasing silver concentration, the Ag2Se phase percolates in the As-Se matrix, with a well-defined percolation threshold at x = 8. A signature of this percolation transition is shown up in the thermal behavior, as sudden jumps in the composition dependence of non-reversing enthalpy, ΔHnr obtained at the second glass transition reaction. Scanning Electron Microscopic (SEM) studies also confirm the microscopic phase separation in these glasses. The super-ionic conduction observed earlier in these glasses at higher silver proportions, is likely to be associated with the silver phase percolation.  相似文献   

20.
Hydrostatic pressure has negligible effect on the resistivity anomaly and thec H /a H ratio of Ti2O3. The results are consistent with the band-crossing mechanism wherein the a T and e T bands cross as thec H /a H ratio increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号