首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we discuss the recent work of Lin and Zhang on the Liouville system of mean field equations: $$\Delta{u}_i+\sum_{j}a_{ij}\rho_{j} ({\frac{{h_j}e^{u_{j}}}{\int_{M}{h_{j}e^{u_{j}}}}-{\frac{1}{|M|}}})=0\,\, \quad{\rm on}\, M,$$ where M is a compact Riemann surface and |M| is the area, or $$\Delta{u}_i+\sum_{j}a_{ij}\rho_{j} \frac{{h_j}e^{u_{j}}}{\int_{\Omega}{h_{j}e^{u_{j}}}}=0\,\, \quad{\rm in}\, \Omega,$$ $${u_j}=0,\,\, \quad{\rm on}\, \partial\Omega, $$ where ?? is a bounded domain in ${\mathbb{R}^2}$ . Among other things, we completely determine the set of non-critical parameters and derive a degree counting formula for these systems.  相似文献   

2.
One proves the global unique solvability in class \(W_\infty ^1 (0,T;C^{2,d} (\bar \Omega ) \cap H(\Omega ))\) of the initial-boundary-value problem for the quasilinear system $$\frac{{\partial \vec \upsilon }}{{\partial t}} + \upsilon _k \frac{{\partial \vec \upsilon }}{{\partial x_k }} - \mu _1 \frac{{\partial \Delta \vec \upsilon }}{{\partial t}} - \int\limits_0^t {K(t - \tau )\Delta \vec \upsilon (\tau )d\tau + grad p = \vec f,di\upsilon \bar \upsilon = 0,\upsilon , > 0.}$$ This system described the nonstationary flows of the elastic-viscous Kelvin-Voigt fluids with defining relation $$\left( {1 + \sum\limits_{\ell = 1}^L {\lambda _\ell } \frac{{\partial ^\ell }}{{\partial t^\ell }}} \right)\sigma = 2\left( {v + \sum\limits_{m = 1}^{L + 1} {\user2{\ae }_m } \frac{{\partial ^m }}{{\partial t^m }}} \right)D,L = 0,1,2,...;\lambda _L ,\user2{\ae }_{L + 1} > 0.$$   相似文献   

3.
Given ${\Omega\subset\mathbb{R}^{n}}$ open, connected and with Lipschitz boundary, and ${s\in (0, 1)}$ , we consider the functional $$\mathcal{J}_s(E,\Omega)\,=\, \int_{E\cap \Omega}\int_{E^c\cap\Omega}\frac{dxdy}{|x-y|^{n+s}}+\int_{E\cap \Omega}\int_{E^c\cap \Omega^c}\frac{dxdy}{|x-y|^{n+s}}\,+ \int_{E\cap \Omega^c}\int_{E^c\cap \Omega}\frac{dxdy}{|x-y|^{n+s}},$$ where ${E\subset\mathbb{R}^{n}}$ is an arbitrary measurable set. We prove that the functionals ${(1-s)\mathcal{J}_s(\cdot, \Omega)}$ are equi-coercive in ${L^1_{\rm loc}(\Omega)}$ as ${s\uparrow 1}$ and that $$\Gamma-\lim_{s\uparrow 1}(1-s)\mathcal{J}_s(E,\Omega)=\omega_{n-1}P(E,\Omega),\quad \text{for every }E\subset\mathbb{R}^{n}\,{\rm measurable}$$ where P(E, ??) denotes the perimeter of E in ?? in the sense of De Giorgi. We also prove that as ${s\uparrow 1}$ limit points of local minimizers of ${(1-s)\mathcal{J}_s(\cdot,\Omega)}$ are local minimizers of P(·, ??).  相似文献   

4.
Пустьw(х)∈L[-1, +1] — неотрица тельная функция така я, что $$\frac{{\log ^ + \frac{1}{{w(x)}}}}{{\sqrt {1 - x^2 } }} \in L[ - 1, + 1]$$ и пусть {(р n (х)} — много члены, ортогональные и нормированные с весо мw(x). Мы доказываем следующие две теорем ы, являющиеся обобщен ием одного известного результа та Н. Винера. I. Для каждого δ, 0<δ<1, суще ствует числоB=B(δ, w) тако е, что если $$f_N (x) = \sum\limits_{j = 1}^N {a_j p_{v_j } (x)} $$ причем выполнено сле дующее условие лакун арности $$\begin{gathered} v_{j + 1} - v_j \geqq B(\delta ,w) (j = 1,2,...,N - 1), \hfill \\ v_1 \geqq B(\delta ,w) \hfill \\ \end{gathered} $$ , то для некоторого С(δ, w) и всехh и δ, для которых $$ - 1 \leqq h - \delta< h + \delta \leqq + 1$$ , имеет место неравенс тво $$\int\limits_{ - 1}^1 {|f_N (x)|^2 w(x)dx \leqq C(\delta ,w)} \int\limits_{h - \delta }^{h + \delta } {|f_N (x)|^2 w(x)dx} $$ каковы бы ни былиa j ,N и h. II. Если формальный ряд $$\sum\limits_{j = 1}^\infty {b_j p_{\mu _j } (x)} $$ удовлетворяет услов ию лакунарности μj+1j→∞ и суммируем, например, м етодом Абеля на произвольно малом отрезке [а, Ь] ?[0,1] к ф ункцииf(x) такой, что \(f(x)\sqrt {w(x)} \in L_2 [a,b]\) , то $$\sum\limits_j {|b_j |^2< \infty } $$ Теорема I — это первый ш аг в направлении проб лемы типа Мюнтца-Саса о замкнут ости подпоследовательно сти pvj(x)} последовател ьности {рn(х)} на отрезке [а, Ь] в метрике С[а, Ь] (см. теорему II стать и).  相似文献   

5.
A difference scheme is constructed for the solution of the variational equation $$\begin{gathered} a\left( {u, v} \right)---u \geqslant \left( {f, v---u} \right)\forall v \varepsilon K,K \{ vv \varepsilon W_2^2 \left( \Omega \right) \cap \mathop {W_2^1 \left( \Omega \right)}\limits^0 ,\frac{{\partial v}}{{\partial u}} \geqslant 0 a.e. on \Gamma \} ; \hfill \\ \Omega = \{ x = (x_1 ,x_2 ):0 \leqslant x_\alpha< l_\alpha ,\alpha = 1, 2\} \Gamma = \bar \Omega - \Omega ,a(u, v) = \hfill \\ = \int\limits_\Omega {\Delta u\Delta } vdx \equiv (\Delta u,\Delta v, \hfill \\ \end{gathered} $$ The following bound is obtained for this scheme: $$\left\| {y - u} \right\|_{W_2 \left( \omega \right)}^2 = 0(h^{(2k - 5)/4} )u \in W_2^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0(h^{\min (k - 2;1,5)/2} ),u \in W_\infty ^k \left( \Omega \right) \cap W_2^3 \left( \Omega \right)$$ The following bounds are obtained for the mixed boundary-value problem: $$\begin{gathered} \left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{\min \left( {k - 2;1,5} \right)} } \right),u \in W_\infty ^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{k - 2,5} } \right), \hfill \\ u \in W_2^k \left( \Omega \right),k \in \left[ {3,4} \right] \hfill \\ \end{gathered} $$ .  相似文献   

6.
In this paper we deal with solutions of problems of the type $$\left\{\begin{array}{ll}-{\rm div} \Big(\frac{a(x)Du}{(1+|u|)^2} \Big)+u = \frac{b(x)|Du|^2}{(1+|u|)^3} +f \quad &{\rm in} \, \Omega,\\ u=0 &{\rm on} \partial \, \Omega, \end{array} \right.$$ where ${0 < \alpha \leq a(x) \leq \beta, |b(x)| \leq \gamma, \gamma > 0, f \in L^2 (\Omega)}$ and Ω is a bounded subset of ${\mathbb{R}^N}$ with N ≥ 3. We prove the existence of at least one solution for such a problem in the space ${W_{0}^{1, 1}(\Omega) \cap L^{2}(\Omega)}$ if the size of the lower order term satisfies a smallness condition when compared with the principal part of the operator. This kind of problems naturally appears when one looks for positive minima of a functional whose model is: $$J (v) = \frac{\alpha}{2} \int_{\Omega}\frac{|D v|^2}{(1 + |v|)^{2}} + \frac{12}{\int_{\Omega}|v|^2} - \int_{\Omega}f\,v , \quad f \in L^2(\Omega),$$ where in this case a(x) ≡ b(x) = α > 0.  相似文献   

7.
It is proved that the operator $$P \equiv - \frac{{\partial ^2 }}{{\partial x_1^2 }} - \sum\nolimits_{k = 2}^n {\frac{\partial }{{\partial x_k }}\varphi ^2 (x)} \frac{\partial }{{\partial x_k }},$$ where ? ε C(Ω) (Ω is a domain in Rn), {x: ?(x) = 0} is a compactun in Ω which is the closure of its internal points, has the property of global hypoellipticity in Ω, i.e., $$\begin{array}{*{20}c} {v \in D'(\Omega ),} & {Pv \in C^\infty } & {(\Omega ) \Rightarrow \upsilon \in C^\infty (\Omega ).} \\ \end{array} $$ . This operator is not hypoelliptic.  相似文献   

8.
We study discrete Sobolev spaces with symmetric inner product $$\left\langle {f,g} \right\rangle _\alpha = \int_{ - 1}^1 {f g d\mu _\alpha } + M[f(1)g(1) + f( - 1)g( - 1)] + K[f'(1)g'(1) + f'( - 1)g'( - 1)]$$ , where M ≥ 0, k ≥ 0, and $$d\mu _\alpha (x) = \frac{{\Gamma (2\alpha + 2)}}{{2^{2\alpha + 1} \Gamma ^2 (\alpha + 1)}}(1 - x^2 )^\alpha dx, \alpha > - 1$$ , is the Gegenbauer probability measure. We obtain the solution of the following extremal problem: Calculate $$\mathop {\inf }\limits_{a_0 ,a_1 ,...,a_{N - r} } \left\{ {\langle P_N^{(r)} ,P_N^{(r)} \rangle _\alpha ,1 \leqslant r \leqslant N - 1, P_N^{(r)} (x) = \sum\limits_{j = N - r + 1}^N {a_j^0 x^j } + \sum\limits_{j = 0}^{N - r} {a_j x^j } } \right\}$$ , where the a j 0 , j = N ? r + 1, N ? r + 2, ..., N ? 1, N, a N 0 > 0, are fixed numbers, and find the extremal polynomial.  相似文献   

9.
Given a stochastic differential equation based on semimartingale with spatial parameter (1) $$\varphi _t = x_0 + \int_{t_0 }^t {F(\varphi _s ,ds) } on t \geqslant t_0 $$ and it perturbed system (2) $$\psi _t = x_0 + \int_{t_0 }^t {F\left( {\psi \alpha _s , ds} \right)} + \int_{t_0 }^t {G\left( {\psi _s , ds} \right)} on t \geqslant t_0 $$ In this paper we give some sufficient conditions under which the eventual uniform asymptotic stability of Eq. (1) is shared by Eq. (2).  相似文献   

10.
In this paper we consider two-sided parabolic inequalities of the form (li) $$\psi _1 \leqslant u \leqslant \psi _2 , in{\mathbf{ }}Q;$$ (lii) $$\left[ { - \frac{{\partial u}}{{\partial t}} + A(t)u + H(x,t,u,Du)} \right]e \geqslant 0, in{\mathbf{ }}Q,$$ for alle in the convex support cone of the solution given by $$K(u) = \left\{ {\lambda (\upsilon - u):\psi _1 \leqslant \upsilon \leqslant \psi _2 ,\lambda > 0} \right\}{\mathbf{ }};$$ (liii) $$\left. {\frac{{\partial u}}{{\partial v}}} \right|_\Sigma = 0, u( \cdot ,T) = \bar u$$ where $$Q = \Omega \times (0,T), \sum = \partial \Omega \times (0,T).$$ Such inequalities arise in the characterization of saddle-point payoffsu in two person differential games with stopping times as strategies. In this case,H is the Hamiltonian in the formulation. A numerical scheme for approximatingu is obtained by the continuous time, piecewise linear, Galerkin approximation of a so-called penalized equation. A rate of convergence tou of orderO(h 1/2) is demonstrated in theL 2(0,T; H 1(Ω)) norm, whereh is the maximum diameter of a given triangulation.  相似文献   

11.
First-order necessary and sufficient conditions are obtained for the following quasilinear distributed-parameter optimal control problem: $$max\left\{ {J(u) = \int_\Omega {F(x,u,t) d\omega + } \int_{\partial \Omega } {G(x,t) \cdot d\sigma } } \right\},$$ subject to the partial differential equation $$A(t)x = f(x,u,t),$$ wheret,u,G are vectors andx,F are scalars. Use is made of then-dimensional Green's theorem and the adjoint problem of the equation. The second integral in the objective function is a generalized surface integral. Use of then-dimensional Green's theorem allows simple generalization of single-parameter methods. Sufficiency is proved under a concavity assumption for the maximized Hamiltonian $$H^\circ (x,\lambda ,t) = \max \{ H(x,u,\lambda ,t):u\varepsilon K\} $$ .  相似文献   

12.
LetΛ 1(Ω) be the first eigenvalue of the vector-valued problem $$\begin{gathered} \Delta u + \alpha grad div u + \Delta u = 0 in \Omega , \hfill \\ u = 0 in \partial \Omega , \hfill \\ \end{gathered} $$ , withα>0. Letλ 1(Ω) be the first eigenvalue of the scalar problem $$\begin{gathered} \Delta u + \lambda u = 0 in \Omega , \hfill \\ u = 0 on \partial \Omega . \hfill \\ \end{gathered} $$ . The paper contains a proof of the inequality $$\left( {1 + \frac{\alpha }{n}} \right)\lambda _1 \left( \Omega \right) > \Lambda _1 \left( \Omega \right) > \left( \Omega \right)$$ and improves recent estimates of Sprössig [15] and Levine and Protter [11]. Moreover we show, ifΩ is a ball, that an eigensolution u1, associated withΛ 1(Ω) is not unique and that the eigensolutions for this and higher eigenvalues are never rotationally invariant. Finally we calculate some eigensolutions explicitly.  相似文献   

13.
Let Ω be a bounded, smooth domain in ${\mathbb{R}^2}$ . We consider the functional $$I(u) = \int_\Omega e^{u^2}\,dx$$ in the supercritical Trudinger-Moser regime, i.e. for ${\int_\Omega |\nabla u|^2dx > 4\pi}$ . More precisely, we are looking for critical points of I(u) in the class of functions ${u \in H_0^1 (\Omega )}$ such that ${\int_\Omega |\nabla u|^2 \, dx = 4\, \pi \, k\, (1+\alpha)}$ , for small α > 0. In particular, we prove the existence of 1-peak critical points of I(u) with ${\int_\Omega |\nabla u|^2dx = 4\pi(1 + \alpha)}$ for any bounded domain Ω, 2-peak critical points with ${\int_\Omega |\nabla u|^2dx = 8\pi(1 + \alpha)}$ for non-simply connected domains Ω, and k-peak critical points with ${\int_\Omega |\nabla u|^2 dx = 4k \pi(1 + \alpha)}$ if Ω is an annulus.  相似文献   

14.
We consider the following fourth order mean field equation with Navier boundary condition $$\Delta^2 u = \rho \frac{h(x) e^{u}}{\int_\Omega h e^{u}}\,\,{\rm in}\, \Omega,{\quad}u = \Delta u = 0\,\,{\rm on}\,\partial \Omega,\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(*)$$ where h is a C 2,?? positive function, ?? is a bounded and smooth domain in ${\mathbb{R}^4}$ . We prove that for ${\rho \in (32m\sigma_3, 32(m + 1)\sigma_3)}$ the degree-counting formula for (*) is given by $$d(\rho)=\left\{\begin{array}{ll}\frac{1}{m!} (-\chi (\Omega) +1) \cdot\cdot \cdot (-\chi(\Omega)+m) & {\rm for}\, m >0 ,\\ 1 & {\rm for}\, m=0\end{array}\right.$$ where ??(??) is the Euler characteristic of ??. Similar result is also proved for the corresponding Dirichlet problem $$\Delta^2 u = \rho \frac{h(x) e^{u}}{\int_\Omega h e^{u}}\quad{\rm in}\,\Omega, \quad u = \nabla u = 0 \quad {\rm on}\,\,\partial \Omega.\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(**)$$   相似文献   

15.
Let \(\chi _0^n = \left\{ {X_t } \right\}_0^n \) be a martingale such that 0≦Xi≦1;i=0, …,n. For 0≦p≦1 denote by ? p n the set of all such martingales satisfying alsoE(X0)=p. Thevariation of a martingale χ 0 n is denoted byV 0 n and defined by \(V(\chi _0^n ) = E\left( {\sum {_{l = 0}^{n - 1} } \left| {X_{l + 1} - X_l } \right|} \right)\) . It is proved that $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\mathop {Sup}\limits_{x_0^n \in \mathcal{M}_p^n } \left[ {\frac{1}{{\sqrt n }}V(\chi _0^n )} \right]} \right\} = \phi (p)$$ , where ?(p) is the well known normal density evaluated at itsp-quantile, i.e. $$\phi (p) = \frac{1}{{\sqrt {2\pi } }}\exp ( - \frac{1}{2}\chi _p^2 ) where \int_{ - \alpha }^{x_p } {\frac{1}{{\sqrt {2\pi } }}\exp ( - \frac{1}{2}\chi ^2 )} dx = p$$ . A sequence of martingales χ 0 n ,n=1,2, … is constructed so as to satisfy \(\lim _{n \to \infty } (1/\sqrt n )V(\chi _0^n ) = \phi (p)\) .  相似文献   

16.
In this paper, we are concerned with the multibump solutions for the following quasilinear Schrödinger system in ${\mathbb{R}^N}$ : $$\left\{\begin{array}{ll}-\Delta{u} + \lambda{a(x)u} - \frac{1}{2}(\Delta|u|^2)u = \frac{2\alpha}{\alpha + \beta}|u|^{\alpha-2}|\upsilon|^\beta u, \\-\Delta{\upsilon} + \lambda{b(x)\upsilon} - \frac{1}{2}(\Delta|\upsilon|^2)\upsilon = \frac{2\beta}{\alpha + \beta}|u|^\alpha|\upsilon|^{\beta-2} \upsilon, \\u(x) \rightarrow 0, \upsilon(x) \rightarrow 0 \quad as|x| \rightarrow \infty,\end{array}\right.$$ where λ > 0 is a parameter, α, β > 2 satisfying αβ < 2 · 2*, here ${2^{*} = \frac{2N}{N-2}}$ is the critical Sobolev exponent for ${N \geq 3}$ and a(x), b(x) are nonnegative potentials. Using variational methods, we prove that if the zero sets of a(x) and b(x) have several common isolated connected components ${\Omega_{1}, . . . ,\Omega_{k}}$ such that the interior of ${\Omega_{i} (i = 1, 2, . . . , k)}$ is not empty and ${\partial\Omega_{i} (i = 1, 2, . . . , k)}$ is smooth, then for λ sufficiently large, the system admits, for any nonempty subset ${J \subset \{1, 2, . . . , k\}}$ , a solution which is trapped in a neighborhood of ${\cup_{j\epsilon{J}} \Omega_{j}}$ .  相似文献   

17.
Let and be polynomials orthogonal on the unit circle with respect to the measures dσ and dμ, respectively. In this paper we consider the question how the orthogonality measures dσ and dμ are related to each other if the orthogonal polynomials are connected by a relation of the form , for , where . It turns out that the two measures are related by if , where and are known trigonometric polynomials of fixed degree and where the 's are the zeros of on . If the 's and 's are uniformly bounded then (under some additional conditions) much more can be said. Indeed, in this case the measures dσ and dμ have to be of the form and , respectively, where are nonnegative trigonometric polynomials. Finally, the question is considered to which weight functions polynomials of the form where denotes the reciprocal polynomial of , can be orthogonal. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Let ${f:\Omega \rightarrow \mathbb{R}}$ be a smooth function on a domain   ${\Omega \subset \mathbb{C}^n}$ with its Hessian matrix ${\left( \frac{\partial^2 f}{\partial z^i \partial\bar{z}^j}\right)}$ positive Hermitian. In this paper, we investigate a class of partial differential equations $$\Delta \ln \det (f_{i\bar{j}}) = \beta \;\| \text{grad} \ln \det (f_{i\bar{j}}) \|^2, $$ where Δ and ${\| \cdot \|}$ are the Laplacian and tensor norm, respectively, with respect to the metric ${G = \sum f_{i\bar{j}} \,dz^i \otimes d\bar{z}^j}$ , and β > 1 is some real constant depending on the dimension n. We prove that the above PDEs have a Bernstein property when the metric G is complete, provided that ${\det (f_{i\bar{j}})}$ and the Ricci curvature are bounded.  相似文献   

19.
In this paper we investigate the integrability of certain radial basis functions. From the following forms of function σ, $$\varphi \left( r \right) = \left\{ \begin{gathered} \sum\limits_{k = 0}^{d + [a]} {c_k r^{a - k} + g(r) } r > A, \hfill \\ \sum\limits_{k = 0}^{d + [a]} {c_k r^{a - k} \ln r + g(r), } r > A. \hfill \\ \end{gathered} \right.$$ where A≧0 and $g \circ || \circ || \in L^1 \left( {R^d } \right)$ , we construct the function $$\psi (t) = \sum\limits_{j \in J} {a_j \varphi \left( {||t - t_j ||} \right),} $$ where J is a finite index set, $\left\{ {a_j } \right\}_{j \in J} \subseteq R$ and $\left\{ {t_j } \right\}_{j \in J} \subseteq R^d $ . We show that if $\hat \psi $ is continuous at the origin, the ψ is integrable in Rd.  相似文献   

20.
Using variational methods, we study the existence and nonexistence of nontrivial weak solutions for the quasilinear elliptic system $$\left\{\begin{array}{ll}- {\rm div}(h_1(|\nabla u|^2)\nabla u) = \frac{\mu}{|x|^2}u + \lambda F_u(x, u, \upsilon)\quad {\rm in}\,\Omega,\\- {\rm div}(h_2(|\nabla \upsilon|^2)\nabla \upsilon) = \frac{\mu}{|x|^2}\upsilon + \lambda F_\upsilon(x,u,\upsilon)\quad {\rm in}\,\Omega,\\u = \upsilon = 0 \qquad \qquad \qquad \qquad \qquad \qquad {\rm in}\, \partial\Omega, \end{array}\right.$$ where \({\Omega \subset \mathbb{R}^N,N \geq 3}\) , is a bounded domain containing the origin with smooth boundary \({\partial \Omega ; h_i, i = 1, 2}\) , are nonhomogeneous potentials; \({(F_u, F_v) = \nabla F}\) stands for the gradient of a sign-changing C 1-function \({F : \Omega \times \mathbb{R}^2 \to \mathbb{R}}\) in the variable \({{w = (u, v) \in \mathbb{R}^2}}\) ; and λ and μ are parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号