首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
高效率半导体激光器光纤耦合模块   总被引:3,自引:7,他引:3       下载免费PDF全文
随着半导体激光光源在激光加工领域的应用不断扩展,以激光二极管阵列制成的光纤耦合模块由于存在耦合效率低的缺点,已不能满足激光加工低成本的需求,因此研制高耦合效率的半导体激光器光纤耦合模块变得十分重要。本文将8只波长为808 nm、输出功率为5 W的单管半导体激光器通过合束技术耦合进光纤,制备了一种高效率的半导体激光器光纤耦合模块。光纤芯径为200 μm、数值孔径(NA)为0.22,光纤输出功率为33.2W,耦合效率超过83%,这种高效率半导体激光器光纤耦合模块,可用于激光打标、塑料加工等领域。  相似文献   

2.
高功率半导体激光器光纤耦合实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为进一步提高光纤耦合半导体激光器的输出功率,提出了一种多单管半导体激光器通过台阶分布、光束精密准直及自由空间合束实现高功率光纤耦合输出的方法,该方法具有结构简单、光学元件易于加工、耦合效率高等优点。采用这种方法对5只封装在次热沉上的单管半导体激光器开展了芯径100μm、数值孔径0.22多模光纤的耦合实验研究,当工作电流为7.0 A时,光纤连续输出功率为21.8 W,亮度为1.83 MW/(cm~2·sr),耦合效率为70.32%。  相似文献   

3.
为进一步提高光纤耦合半导体激光器的输出功率,提出了一种多单管半导体激光器通过台阶分布、光束精密准直及自由空间合束实现高功率光纤耦合输出的方法,该方法具有结构简单、光学元件易于加工、耦合效率高等优点。采用这种方法对5只封装在次热沉上的单管半导体激光器开展了芯径100 m、数值孔径0.22多模光纤的耦合实验研究,当工作电流为7.0 A时,光纤连续输出功率为21.8 W,亮度为1.83 MW/(cm2sr) ,耦合效率为70.32%。  相似文献   

4.
杨逸飞  秦文斌  刘友强  赵帆  李景  赵明  兰天  王智勇 《强激光与粒子束》2020,32(7):071005-1-071005-5
为了进一步提高多单管半导体激光器的输出功率,通过对常见的阶梯型多单管半导体阵列进行分析,提出在光斑尺寸较小的慢轴方向对光束进行填充,在同样的耦合条件下,使更多的激光能量耦合进光纤中,实现更高功率的输出。文中使用光参数积作为评价光束质量的指标,论证了慢轴光束填充的可行性,利用ZEMAX仿真软件对8路常见阶梯型多单管半导体阵列和12路填充阵列进行对比仿真,在不影响耦合效率的前提下,实现了将12路波长为860 nm、输出功率3 W的单管半导体激光器耦合进芯径105 μm、数值孔径0.22的光纤中,光纤输出功率为33.4 W,光纤耦合效率为92.78%。仿真结果表明,对慢轴方向进行光束填充可以在一定程度上提高多单管半导体激光的功率输出。  相似文献   

5.
高亮度半导体激光阵列光纤耦合模块   总被引:1,自引:6,他引:1  
利用2只915 nm半导体激光短列阵作为子模块,设计并研制出连续输出的高亮度光纤耦合模块。首先对每个半导体激光短列阵进行光束整形,从而提高它的光束质量;然后采用空间复用技术将这两个半导体激光短列阵出射的激光在光参数积小的方向上叠加,并利用偏振复用技术进一步提高光束质量;最后利用单片非球面透镜将激光聚焦到芯径为100 μm、数值孔径为0.22的光纤中。测量结果显示:在工作电流为52.5 A时,聚焦镜焦平面的光斑尺寸为105.4 μm;耦合后测量光纤出光功率可达72.6 W,对应亮度为6.08 MW/(cm2·sr),模块的电光转换效率为42.2%。最后测量了模块在不同驱动电流时的光谱,证明该模块的散热性能良好。  相似文献   

6.
高功率蓝光半导体激光可广泛应用于高反射高导电材料的加工中。阐述了一种高效紧凑的高功率高亮度蓝光半导体激光光纤耦合的实现方法,将27只蓝光单管组成3×9阵列并耦合进100 μm/NA0.2的光纤中。研制出的光纤耦合模块可实现450 nm波段蓝光LD输出,功率约75 W,电光效率约28%,还可采用偏振合束进一步提升光纤耦合激光功率。  相似文献   

7.
多线阵半导体激光器的单光纤耦合输出   总被引:3,自引:1,他引:3  
设计并研制了一种多线阵半导体激光器的高亮度光纤耦合输出模块.激光器芯片采用了分子束外延方法生长的宽波导、双量子阱结构AlGaAs/GaAs激光器外延材料,激光器模块采用6只准直的线阵半导体激光器,器件腔长为1.2mm,单个发光单元宽度为100μm,发光单元周期为500μm,单线阵器件包括19个发光单元,单线阵器件的连续输出功率为50W,每只单线阵器件的准直输出光束经过空间合束后再通过光束对称化变换实现了多线阵器件输出的高光束质量功率合成,采用平凸柱透镜实现了合束光束与400μm芯径、数值孔径0.22石英光纤的高效率耦合,整体耦合效率达到65%,最大耦合输出功率达到195W,光纤端面功率密度达到1.55×105W/cm2.  相似文献   

8.
用3只976 nm半导体激光短列阵作为子模块,研制出连续工作的百瓦级高亮度光纤耦合模块。首先,利用光束转换器将每个半导体激光短列阵进行光束整形;然后采用空间复用技术将3个半导体激光短列阵在光参数积小的方向上叠加,并利用倒置伽利略望远镜作为扩束器进一步压缩发散角;最后利用优化结构的透镜组将激光聚焦到芯径200 μm,数值孔径为0.22的光纤中。测量结果显示:聚焦后激光的发散角为24.8°,焦平面的光斑尺寸为175.2 μm;耦合后测量光纤出光功率可达107 W,对应亮度为2.23 MW/(cm2·sr),达到了国内利用列阵进行光纤耦合的领先水平;在工作电流为52.5 A时,电光转换效率为43.1%,远高于全固态等激光器;最后测量本模块在不同驱动电流时的光谱,并以此计算出模块的热阻为1.29 K/W,说明它的散热性能良好。结果表明,本光纤耦合模块适合应用于泵浦光纤激光器、医疗和激光加工等领域。  相似文献   

9.
设计并研制了一种多线阵半导体激光器的高亮度光纤耦合输出模块.激光器芯片采用了分子束外延方法生长的宽波导、双量子阱结构AlGaAs/GaAs激光器外延材料,激光器模块采用6只准直的线阵半导体激光器,器件腔长为1.2 mm,单个发光单元宽度为100 μm,发光单元周期为500 μm,单线阵器件包括19个发光单元,单线阵器件的连续输出功率为50 W,每只单线阵器件的准直输出光束经过空间合束后再通过光束对称化变换实现了多线阵器件输出的高光束质量功率合成,采用平凸柱透镜实现了合束光束与400 μm芯径、数值孔径0.22石英光纤的高效率耦合,整体耦合效率达到65%,最大耦合输出功率达到195 W,光纤端面功率密度达到1.55×105 W/cm2.  相似文献   

10.
应用ZEMAX软件设计出高亮度大功率光纤耦合模块。采用16支输出功率12 W的单偏振态单边发射半导体激光器,耦合进芯径100 μm、数值孔径0.22的光纤中。模块输出功率达到189.4 W,耦合效率达到98.6%,亮度达到94.66 MW/cm2-str。通过SolidWorks软件优化得到新热沉结构,应用ANSYS软件进行热分析,结果表明新热沉结构最高温度为42.4℃,相比优化前温度降低1℃以上,得到良好散热结构模型。  相似文献   

11.
采用光束整形和空间合束的方法,研制出高功率、高效率多阵列光纤耦合半导体激光模块。将波长为976 nm连续工作的5个标准半导体阵列,通过对快轴进行准直和快慢轴光束旋转的方式进行光束整形,准直后进行空间合束,经耦合透镜聚焦,耦合入芯径400 m、数值孔径0.22的光纤。测量结果显示:光纤的出光功率最大可达到327 W,光纤耦合效率大于93.6%。  相似文献   

12.
基于二极管激光器mini-bar的光纤耦合方式是一种降低耦合系统成本并提高整体转换效率的方法, 为此,采用40片封装在铜微通道冷却器上的连续60 W二极管激光器mini-bar组成空间叠加阵列,作为耦合光源,采用非球面柱透镜及柱透镜阵列对mini-bar叠阵进行了快轴与慢轴的准直,实现了两列叠阵的激光束沿快轴方向的空间合成以提高叠阵激光束的填充因子,合成后的激光束可以耦合进入芯径为800 m、数值孔径为0.22的光纤。测试结果表明,光纤耦合模块输出功率最高为1360 W,整体光光效率58%,光纤端面的功率密度达到1.73105 W/cm2。  相似文献   

13.
大功率半导体激光合束进展   总被引:1,自引:0,他引:1       下载免费PDF全文
王立军  彭航宇  张俊 《中国光学》2015,8(4):517-534
经过近30年的发展,半导体激光器已由信息器件逐步发展成为能量器件,特别是大功率高光束质量半导体激光器,已从泵浦光源过渡成为直接作用光源,并部分应用在加工及国防领域。本文介绍了大功率半导体激光单元发展现状,分析讨论了各种激光合束技术及相应的合束光源,介绍了长春光机所在激光合束方面所做的部分工作,提出了我国半导体激光产业建设及发展的几点建议,并对半导体激光技术的发展新动向进行了展望。随着单元亮度的提升和合束技术的成熟,大功率半导体激光源作为间接光源和直接作用光源将在国防和工业领域大放异彩。  相似文献   

14.
采用光束整形和空间合束的方法,研制出高功率、高效率多阵列光纤耦合半导体激光模块。将波长为976nm连续工作的5个标准半导体阵列,通过对快轴进行准直和快慢轴光束旋转的方式进行光束整形,准直后进行空间合束,经耦合透镜聚焦,耦合入芯径400μm、数值孔径0.22的光纤。测量结果显示:光纤的出光功率最大可达到327 W,光纤耦合效率大于93.6%。  相似文献   

15.
搭建了一台全光纤结构的窄线宽高功率掺镱光纤激光器。种子激光的输出功率大于40 mW,线宽窄于100 MHz。采用主振荡功率放大结构三级放大,主放泵浦功率为405 W时得到了334 W的窄线宽高功率激光输出,光光转换效率为82.4%。目前,激光器输出功率仅受限于泵浦功率,增加有效泵浦功率即有望进一步提高输出功率。  相似文献   

16.
 搭建了一台全光纤结构的窄线宽高功率掺镱光纤激光器。种子激光的输出功率大于40 mW,线宽窄于100 MHz。采用主振荡功率放大结构三级放大,主放泵浦功率为405 W时得到了334 W的窄线宽高功率激光输出,光光转换效率为82.4%。目前,激光器输出功率仅受限于泵浦功率,增加有效泵浦功率即有望进一步提高输出功率。  相似文献   

17.
高功率光纤端帽是kW级光纤激光器必不可少的器件,而实现光纤端帽的低损耗高强度熔接是其关键技术。由于光纤和大尺寸光纤端帽在直径上的巨大差异,二者的熔接不能通过传统熔接机实现。设计并搭建了光纤端帽熔接系统,掌握了多种尺寸的光纤端帽的熔接工艺,成功用于光纤激光器及光纤合束器的高功率输出。实验上利用单模光端帽实现了3.01 kW的激光输出,在未进行主动制冷的情况下温升为7 ℃/kW。利用多模光纤端帽实现了6.08 kW的激光输出,在未进行主动制冷的情况下温升为6 ℃/kW。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号